Abstract:Cryo-electron tomography (cryo-ET) provides direct 3D visualization of macromolecules inside the cell, enabling analysis of their in situ morphology. This morphology can be regarded as an SE(3)-invariant, denoised volumetric representation of subvolumes extracted from tomograms. Inferring morphology is therefore an inverse problem of estimating both a template morphology and its SE(3) transformation. Existing expectation-maximization based solution to this problem often misses rare but important morphologies and requires extensive manual hyperparameter tuning. Addressing this issue, we present a disentangled deep representation learning framework that separates SE(3) transformations from morphological content in the representation space. The framework includes a novel multi-choice learning module that enables this disentanglement for highly noisy cryo-ET data, and the learned morphological content is used to generate template morphologies. Experiments on simulated and real cryo-ET datasets demonstrate clear improvements over prior methods, including the discovery of previously unidentified macromolecular morphologies.
Abstract:Medical image segmentation is vital for clinical diagnosis, yet current deep learning methods often demand extensive expert effort, i.e., either through annotating large training datasets or providing prompts at inference time for each new case. This paper introduces a zero-shot and automatic segmentation pipeline that combines off-the-shelf vision-language and segmentation foundation models. Given a medical image and a task definition (e.g., "segment the optic disc in an eye fundus image"), our method uses a grounding model to generate an initial bounding box, followed by a visual prompt boosting module that enhance the prompts, which are then processed by a promptable segmentation model to produce the final mask. To address the challenges of domain gap and result verification, we introduce a test-time adaptation framework featuring a set of learnable adaptors that align the medical inputs with foundation model representations. Its hyperparameters are optimized via Bayesian Optimization, guided by a proxy validation model without requiring ground-truth labels. Our pipeline offers an annotation-efficient and scalable solution for zero-shot medical image segmentation across diverse tasks. Our pipeline is evaluated on seven diverse medical imaging datasets and shows promising results. By proper decomposition and test-time adaptation, our fully automatic pipeline performs competitively with weakly-prompted interactive foundation models.