Abstract:Cryo-electron tomography (cryo-ET) has emerged as a powerful technique for imaging macromolecular complexes in their near-native states. However, the localization of 3D particles in cellular environments still presents a significant challenge due to low signal-to-noise ratios and missing wedge artifacts. Deep learning approaches have shown great potential, but they need huge amounts of data, which can be a challenge in cryo-ET scenarios where labeled data is often scarce. In this paper, we propose a novel Self-augmented and Self-interpreted (SaSi) deep learning approach towards few-shot particle detection in 3D cryo-ET images. Our method builds upon self-augmentation techniques to further boost data utilization and introduces a self-interpreted segmentation strategy for alleviating dependency on labeled data, hence improving generalization and robustness. As demonstrated by experiments conducted on both simulated and real-world cryo-ET datasets, the SaSi approach significantly outperforms existing state-of-the-art methods for particle localization. This research increases understanding of how to detect particles with very few labels in cryo-ET and thus sets a new benchmark for few-shot learning in structural biology.
Abstract:In the domain of large foundation models, the Segment Anything Model (SAM) has gained notable recognition for its exceptional performance in image segmentation. However, tackling the video camouflage object detection (VCOD) task presents a unique challenge. Camouflaged objects typically blend into the background, making them difficult to distinguish in still images. Additionally, ensuring temporal consistency in this context is a challenging problem. As a result, SAM encounters limitations and falls short when applied to the VCOD task. To overcome these challenges, we propose a new method called the SAM Propagation Module (SAM-PM). Our propagation module enforces temporal consistency within SAM by employing spatio-temporal cross-attention mechanisms. Moreover, we exclusively train the propagation module while keeping the SAM network weights frozen, allowing us to integrate task-specific insights with the vast knowledge accumulated by the large model. Our method effectively incorporates temporal consistency and domain-specific expertise into the segmentation network with an addition of less than 1% of SAM's parameters. Extensive experimentation reveals a substantial performance improvement in the VCOD benchmark when compared to the most recent state-of-the-art techniques. Code and pre-trained weights are open-sourced at https://github.com/SpiderNitt/SAM-PM