Abstract:Multi-label image recognition with partial labels (MLR-PL), in which some labels are known while others are unknown for each image, may greatly reduce the cost of annotation and thus facilitate large-scale MLR. We find that strong semantic correlations exist within each image and across different images, and these correlations can help transfer the knowledge possessed by the known labels to retrieve the unknown labels and thus improve the performance of the MLR-PL task (see Figure 1). In this work, we propose a novel heterogeneous semantic transfer (HST) framework that consists of two complementary transfer modules that explore both within-image and cross-image semantic correlations to transfer the knowledge possessed by known labels to generate pseudo labels for the unknown labels. Specifically, an intra-image semantic transfer (IST) module learns an image-specific label co-occurrence matrix for each image and maps the known labels to complement the unknown labels based on these matrices. Additionally, a cross-image transfer (CST) module learns category-specific feature-prototype similarities and then helps complement the unknown labels that have high degrees of similarity with the corresponding prototypes. Finally, both the known and generated pseudo labels are used to train MLR models. Extensive experiments conducted on the Microsoft COCO, Visual Genome, and Pascal VOC 2007 datasets show that the proposed HST framework achieves superior performance to that of current state-of-the-art algorithms. Specifically, it obtains mean average precision (mAP) improvements of 1.4%, 3.3%, and 0.4% on the three datasets over the results of the best-performing previously developed algorithm.
Abstract:Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously.
Abstract:Due to the sophisticated imaging process, an identical scene captured by different cameras could exhibit distinct imaging patterns, introducing distinct proficiency among the super-resolution (SR) models trained on images from different devices. In this paper, we investigate a novel and practical task coded cross-device SR, which strives to adapt a real-world SR model trained on the paired images captured by one camera to low-resolution (LR) images captured by arbitrary target devices. The proposed task is highly challenging due to the absence of paired data from various imaging devices. To address this issue, we propose an unsupervised domain adaptation mechanism for real-world SR, named Dual ADversarial Adaptation (DADA), which only requires LR images in the target domain with available real paired data from a source camera. DADA employs the Domain-Invariant Attention (DIA) module to establish the basis of target model training even without HR supervision. Furthermore, the dual framework of DADA facilitates an Inter-domain Adversarial Adaptation (InterAA) in one branch for two LR input images from two domains, and an Intra-domain Adversarial Adaptation (IntraAA) in two branches for an LR input image. InterAA and IntraAA together improve the model transferability from the source domain to the target. We empirically conduct experiments under six Real to Real adaptation settings among three different cameras, and achieve superior performance compared with existing state-of-the-art approaches. We also evaluate the proposed DADA to address the adaptation to the video camera, which presents a promising research topic to promote the wide applications of real-world super-resolution. Our source code is publicly available at https://github.com/lonelyhope/DADA.git.
Abstract:Continual learning is a challenging real-world problem for constructing a mature AI system when data are provided in a streaming fashion. Despite recent progress in continual classification, the researches of continual object detection are impeded by the diverse sizes and numbers of objects in each image. Different from previous works that tune the whole network for all tasks, in this work, we present a simple and flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTing mechAnism (ROSETTA). Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks. In this way, various knowledge can be successively memorized by storing their corresponding sub-model weights in this system. To make ROSETTA automatically determine which experience is available and useful, a prototypical task correlation guided Gating Diversity Controller(GDC) is introduced to adaptively adjust the diversity of gates for the new task based on class-specific prototypes. GDC module computes class-to-class correlation matrix to depict the cross-task correlation, and hereby activates more exclusive gates for the new task if a significant domain gap is observed. Comprehensive experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance on both task-based and class-based continual object detection.
Abstract:Spatial-temporal representation learning is ubiquitous in various real-world applications, including visual comprehension, video understanding, multi-modal analysis, human-computer interaction, and urban computing. Due to the emergence of huge amounts of multi-modal heterogeneous spatial/temporal/spatial-temporal data in big data era, the lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models. The majority of the existing methods tend to fit the original data/variable distributions and ignore the essential causal relations behind the multi-modal knowledge, which lacks an unified guidance and analysis about why modern spatial-temporal representation learning methods are easily collapse into data bias and have limited generalization and cognitive abilities. Inspired by the strong inference ability of human-level agents, recent years have therefore witnessed great effort in developing causal reasoning paradigms to realize robust representation and model learning with good cognitive ability. In this paper, we conduct a comprehensive review of existing causal reasoning methods for spatial-temporal representation learning, covering fundamental theories, models, and datasets. The limitations of current methods and datasets are also discussed. Moreover, we propose some primary challenges, opportunities, and future research directions for benchmarking causal reasoning algorithms in spatial-temporal representation learning. This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods, publicly available benchmarks, and consensus-building standards for reliable spatial-temporal representation learning and related real-world applications more efficiently.
Abstract:The underlying correlation between audio and visual modalities within videos can be utilized to learn supervised information for unlabeled videos. In this paper, we present an end-to-end self-supervised framework named Audio-Visual Contrastive Learning (AVCL), to learn discriminative audio-visual representations for action recognition. Specifically, we design an attention based multi-modal fusion module (AMFM) to fuse audio and visual modalities. To align heterogeneous audio-visual modalities, we construct a novel co-correlation guided representation alignment module (CGRA). To learn supervised information from unlabeled videos, we propose a novel self-supervised contrastive learning module (SelfCL). Furthermore, to expand the existing audio-visual action recognition datasets and better evaluate our framework AVCL, we build a new audio-visual action recognition dataset named Kinetics-Sounds100. Experimental results on Kinetics-Sounds32 and Kinetics-Sounds100 datasets demonstrate the superiority of our AVCL over the state-of-the-art methods on large-scale action recognition benchmark.
Abstract:Recently many multi-label image recognition (MLR) works have made significant progress by introducing pre-trained object detection models to generate lots of proposals or utilizing statistical label co-occurrence enhance the correlation among different categories. However, these works have some limitations: (1) the effectiveness of the network significantly depends on pre-trained object detection models that bring expensive and unaffordable computation; (2) the network performance degrades when there exist occasional co-occurrence objects in images, especially for the rare categories. To address these problems, we propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category and capture semantic dependency among all categories. Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model to focus on semantic-aware regions. We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions to regularize the network training. Extensive experiments and comparisons on two popular MLR benchmark datasets (i.e., MS-COCO and Pascal VOC 2007) demonstrate the effectiveness of the proposed framework over current state-of-the-art algorithms.
Abstract:In Open Set Domain Adaptation (OSDA), large amounts of target samples are drawn from the implicit categories that never appear in the source domain. Due to the lack of their specific belonging, existing methods indiscriminately regard them as a single class unknown. We challenge this broadly-adopted practice that may arouse unexpected detrimental effects because the decision boundaries between the implicit categories have been fully ignored. Instead, we propose Self-supervised Class-Discovering Adapter (SCDA) that attempts to achieve OSDA by gradually discovering those implicit classes, then incorporating them to restructure the classifier and update the domain-adaptive features iteratively. SCDA performs two alternate steps to achieve implicit class discovery and self-supervised OSDA, respectively. By jointly optimizing for two tasks, SCDA achieves the state-of-the-art in OSDA and shows a competitive performance to unearth the implicit target classes.
Abstract:Training the multi-label image recognition models with partial labels, in which merely some labels are known while others are unknown for each image, is a considerably challenging and practical task. To address this task, current algorithms mainly depend on pre-training classification or similarity models to generate pseudo labels for the unknown labels. However, these algorithms depend on sufficient multi-label annotations to train the models, leading to poor performance especially with low known label proportion. In this work, we propose to blend category-specific representation across different images to transfer information of known labels to complement unknown labels, which can get rid of pre-training models and thus does not depend on sufficient annotations. To this end, we design a unified semantic-aware representation blending (SARB) framework that exploits instance-level and prototype-level semantic representation to complement unknown labels by two complementary modules: 1) an instance-level representation blending (ILRB) module blends the representations of the known labels in an image to the representations of the unknown labels in another image to complement these unknown labels. 2) a prototype-level representation blending (PLRB) module learns more stable representation prototypes for each category and blends the representation of unknown labels with the prototypes of corresponding labels to complement these labels. Extensive experiments on the MS-COCO, Visual Genome, Pascal VOC 2007 datasets show that the proposed SARB framework obtains superior performance over current leading competitors on all known label proportion settings, i.e., with the mAP improvement of 4.6%, 4.%, 2.2% on these three datasets when the known label proportion is 10%. Codes are available at https://github.com/HCPLab-SYSU/HCP-MLR-PL.
Abstract:Recent advances in deep learning significantly boost the performance of salient object detection (SOD) at the expense of labeling larger-scale per-pixel annotations. To relieve the burden of labor-intensive labeling, deep unsupervised SOD methods have been proposed to exploit noisy labels generated by handcrafted saliency methods. However, it is still difficult to learn accurate saliency details from rough noisy labels. In this paper, we propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations. Specifically, we first construct a novel synthetic SOD dataset by a simple copy-paste strategy. Considering the large appearance differences between the synthetic and real-world scenarios, directly training with synthetic data will lead to performance degradation on real-world scenarios. To mitigate this problem, we propose a novel unsupervised domain adaptive SOD method to adapt between these two domains by uncertainty-aware self-training. Experimental results show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets, and is even comparable to fully-supervised ones.