Abstract:Personalized text-to-image generation aims to synthesize images of user-provided concepts in diverse contexts. Despite recent progress in multi-concept personalization, most are limited to object concepts and struggle to customize abstract concepts (e.g., pose, lighting). Some methods have begun exploring multi-concept personalization supporting abstract concepts, but they require test-time fine-tuning for each new concept, which is time-consuming and prone to overfitting on limited training images. In this work, we propose a novel tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning. Our method builds upon the modulation mechanism in pretrained Diffusion Transformers (DiTs) model, leveraging the localized and semantically meaningful properties of the modulation space. Specifically, we propose a novel module, Mod-Adapter, to predict concept-specific modulation direction for the modulation process of concept-related text tokens. It incorporates vision-language cross-attention for extracting concept visual features, and Mixture-of-Experts (MoE) layers that adaptively map the concept features into the modulation space. Furthermore, to mitigate the training difficulty caused by the large gap between the concept image space and the modulation space, we introduce a VLM-guided pretraining strategy that leverages the strong image understanding capabilities of vision-language models to provide semantic supervision signals. For a comprehensive comparison, we extend a standard benchmark by incorporating abstract concepts. Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
Abstract:Although dual-stream architectures have achieved remarkable success in single image reflection removal, they fail to fully exploit inter-layer complementarity in their physical modeling and network design, which limits the quality of image separation. To address this fundamental limitation, we propose two targeted improvements to enhance dual-stream architectures: First, we introduce a novel inter-layer complementarity model where low-frequency components extracted from the residual layer interact with the transmission layer through dual-stream architecture to enhance inter-layer complementarity. Meanwhile, high-frequency components from the residual layer provide inverse modulation to both streams, improving the detail quality of the transmission layer. Second, we propose an efficient inter-layer complementarity attention mechanism which first cross-reorganizes dual streams at the channel level to obtain reorganized streams with inter-layer complementary structures, then performs attention computation on the reorganized streams to achieve better inter-layer separation, and finally restores the original stream structure for output. Experimental results demonstrate that our method achieves state-of-the-art separation quality on multiple public datasets while significantly reducing both computational cost and model complexity.
Abstract:3D affordance reasoning is essential in associating human instructions with the functional regions of 3D objects, facilitating precise, task-oriented manipulations in embodied AI. However, current methods, which predominantly depend on sparse 3D point clouds, exhibit limited generalizability and robustness due to their sensitivity to coordinate variations and the inherent sparsity of the data. By contrast, 3D Gaussian Splatting (3DGS) delivers high-fidelity, real-time rendering with minimal computational overhead by representing scenes as dense, continuous distributions. This positions 3DGS as a highly effective approach for capturing fine-grained affordance details and improving recognition accuracy. Nevertheless, its full potential remains largely untapped due to the absence of large-scale, 3DGS-specific affordance datasets. To overcome these limitations, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23,677 Gaussian instances, 8,354 point cloud instances, and 6,631 manually annotated affordance labels, encompassing 21 object categories and 18 affordance types. Building upon this dataset, we introduce AffordSplatNet, a novel model specifically designed for affordance reasoning using 3DGS representations. AffordSplatNet features an innovative cross-modal structure alignment module that exploits structural consistency priors to align 3D point cloud and 3DGS representations, resulting in enhanced affordance recognition accuracy. Extensive experiments demonstrate that the 3DAffordSplat dataset significantly advances affordance learning within the 3DGS domain, while AffordSplatNet consistently outperforms existing methods across both seen and unseen settings, highlighting its robust generalization capabilities.
Abstract:Image fusion seeks to seamlessly integrate foreground objects with background scenes, producing realistic and harmonious fused images. Unlike existing methods that directly insert objects into the background, adaptive and interactive fusion remains a challenging yet appealing task. It requires the foreground to adjust or interact with the background context, enabling more coherent integration. To address this, we propose an iterative human-in-the-loop data generation pipeline, which leverages limited initial data with diverse textual prompts to generate fusion datasets across various scenarios and interactions, including placement, holding, wearing, and style transfer. Building on this, we introduce DreamFuse, a novel approach based on the Diffusion Transformer (DiT) model, to generate consistent and harmonious fused images with both foreground and background information. DreamFuse employs a Positional Affine mechanism to inject the size and position of the foreground into the background, enabling effective foreground-background interaction through shared attention. Furthermore, we apply Localized Direct Preference Optimization guided by human feedback to refine DreamFuse, enhancing background consistency and foreground harmony. DreamFuse achieves harmonious fusion while generalizing to text-driven attribute editing of the fused results. Experimental results demonstrate that our method outperforms state-of-the-art approaches across multiple metrics.
Abstract:Visible watermark removal which involves watermark cleaning and background content restoration is pivotal to evaluate the resilience of watermarks. Existing deep neural network (DNN)-based models still struggle with large-area watermarks and are overly dependent on the quality of watermark mask prediction. To overcome these challenges, we introduce a novel feature adapting framework that leverages the representation modeling capacity of a pre-trained image inpainting model. Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model. We establish a dual-branch system to capture and embed features from the residual background content, which are merged into intermediate features of the inpainting backbone model via gated feature fusion modules. Moreover, for relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process. This contributes to a visible image removal model which is insensitive to the quality of watermark mask during testing. Extensive experiments on both a large-scale synthesized dataset and a real-world dataset demonstrate that our approach significantly outperforms existing state-of-the-art methods. The source code is available in the supplementary materials.
Abstract:Driven by the great success of Large Language Models (LLMs) in the 2D image domain, their applications in 3D scene understanding has emerged as a new trend. A key difference between 3D and 2D is that the situation of an egocentric observer in 3D scenes can change, resulting in different descriptions (e.g., ''left" or ''right"). However, current LLM-based methods overlook the egocentric perspective and simply use datasets from a global viewpoint. To address this issue, we propose a novel approach to automatically generate a situation-aware dataset by leveraging the scanning trajectory during data collection and utilizing Vision-Language Models (VLMs) to produce high-quality captions and question-answer pairs. Furthermore, we introduce a situation grounding module to explicitly predict the position and orientation of observer's viewpoint, thereby enabling LLMs to ground situation description in 3D scenes. We evaluate our approach on several benchmarks, demonstrating that our method effectively enhances the 3D situational awareness of LLMs while significantly expanding existing datasets and reducing manual effort.
Abstract:Text-driven image generation using diffusion models has recently gained significant attention. To enable more flexible image manipulation and editing, recent research has expanded from single image generation to transparent layer generation and multi-layer compositions. However, existing approaches often fail to provide a thorough exploration of multi-layer structures, leading to inconsistent inter-layer interactions, such as occlusion relationships, spatial layout, and shadowing. In this paper, we introduce DreamLayer, a novel framework that enables coherent text-driven generation of multiple image layers, by explicitly modeling the relationship between transparent foreground and background layers. DreamLayer incorporates three key components, i.e., Context-Aware Cross-Attention (CACA) for global-local information exchange, Layer-Shared Self-Attention (LSSA) for establishing robust inter-layer connections, and Information Retained Harmonization (IRH) for refining fusion details at the latent level. By leveraging a coherent full-image context, DreamLayer builds inter-layer connections through attention mechanisms and applies a harmonization step to achieve seamless layer fusion. To facilitate research in multi-layer generation, we construct a high-quality, diverse multi-layer dataset including 400k samples. Extensive experiments and user studies demonstrate that DreamLayer generates more coherent and well-aligned layers, with broad applicability, including latent-space image editing and image-to-layer decomposition.
Abstract:Virtual Try-On (VTON) is a transformative technology in e-commerce and fashion design, enabling realistic digital visualization of clothing on individuals. In this work, we propose VTON 360, a novel 3D VTON method that addresses the open challenge of achieving high-fidelity VTON that supports any-view rendering. Specifically, we leverage the equivalence between a 3D model and its rendered multi-view 2D images, and reformulate 3D VTON as an extension of 2D VTON that ensures 3D consistent results across multiple views. To achieve this, we extend 2D VTON models to include multi-view garments and clothing-agnostic human body images as input, and propose several novel techniques to enhance them, including: i) a pseudo-3D pose representation using normal maps derived from the SMPL-X 3D human model, ii) a multi-view spatial attention mechanism that models the correlations between features from different viewing angles, and iii) a multi-view CLIP embedding that enhances the garment CLIP features used in 2D VTON with camera information. Extensive experiments on large-scale real datasets and clothing images from e-commerce platforms demonstrate the effectiveness of our approach. Project page: https://scnuhealthy.github.io/VTON360.
Abstract:Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
Abstract:Egocentric scenes exhibit frequent occlusions, varied viewpoints, and dynamic interactions compared to typical scene understanding tasks. Occlusions and varied viewpoints can lead to multi-view semantic inconsistencies, while dynamic objects may act as transient distractors, introducing artifacts into semantic feature modeling. To address these challenges, we propose EgoSplat, a language-embedded 3D Gaussian Splatting framework for open-vocabulary egocentric scene understanding. A multi-view consistent instance feature aggregation method is designed to leverage the segmentation and tracking capabilities of SAM2 to selectively aggregate complementary features across views for each instance, ensuring precise semantic representation of scenes. Additionally, an instance-aware spatial-temporal transient prediction module is constructed to improve spatial integrity and temporal continuity in predictions by incorporating spatial-temporal associations across multi-view instances, effectively reducing artifacts in the semantic reconstruction of egocentric scenes. EgoSplat achieves state-of-the-art performance in both localization and segmentation tasks on two datasets, outperforming existing methods with a 8.2% improvement in localization accuracy and a 3.7% improvement in segmentation mIoU on the ADT dataset, and setting a new benchmark in open-vocabulary egocentric scene understanding. The code will be made publicly available.