Abstract:Occupancy Grid Maps are widely used in navigation for their ability to represent 3D space occupancy. However, existing methods that utilize multi-view cameras to construct Occupancy Networks for perception modeling suffer from cubic growth in data complexity. Adopting a Bird's-Eye View (BEV) perspective offers a more practical solution for autonomous driving, as it provides higher semantic density and mitigates complex object occlusions. Nonetheless, BEV-based approaches still require extensive engineering optimizations to enable efficient large-scale global modeling. To address this challenge, we propose InstanceBEV, the first method to introduce instance-level dimensionality reduction for BEV, enabling global modeling with transformers without relying on sparsification or acceleration operators. Different from other BEV methods, our approach directly employs transformers to aggregate global features. Compared to 3D object detection models, our method samples global feature maps into 3D space. Experiments on OpenOcc-NuScenes dataset show that InstanceBEV achieves state-of-the-art performance while maintaining a simple, efficient framework without requiring additional optimizations.
Abstract:MZI-based block optical neural networks (BONNs), which can achieve large-scale network models, have increasingly drawn attentions. However, the robustness of the current training algorithm is not high enough. Moreover, large-scale BONNs usually contain numerous trainable parameters, resulting in expensive computation and power consumption. In this article, by pruning matrix blocks and directly optimizing the individuals in population, we propose an on-chip covariance matrix adaptation evolution strategy and attention-based pruning (CAP) algorithm for large-scale BONNs. The calculated results demonstrate that the CAP algorithm can prune 60% and 80% of the parameters for MNIST and Fashion-MNIST datasets, respectively, while only degrades the performance by 3.289% and 4.693%. Considering the influence of dynamic noise in phase shifters, our proposed CAP algorithm (performance degradation of 22.327% for MNIST dataset and 24.019% for Fashion-MNIST dataset utilizing a poor fabricated chip and electrical control with a standard deviation of 0.5) exhibits strongest robustness compared with both our previously reported block adjoint training algorithm (43.963% and 41.074%) and the covariance matrix adaptation evolution strategy (25.757% and 32.871%), respectively. Moreover, when 60% of the parameters are pruned, the CAP algorithm realizes 88.5% accuracy in experiment for the simplified MNIST dataset, which is similar to the simulation result without noise (92.1%). Additionally, we simulationally and experimentally demonstrate that using MZIs with only internal phase shifters to construct BONNs is an efficient way to reduce both the system area and the required trainable parameters. Notably, our proposed CAP algorithm show excellent potential for larger-scale network models and more complex tasks.
Abstract:Retrieval-augmented generation (RAG) systems often suffer from performance degradation when encountering noisy or irrelevant documents, driving researchers to develop sophisticated training strategies to enhance their robustness against such retrieval noise. However, as large language models (LLMs) continue to advance, the necessity of these complex training methods is increasingly questioned. In this paper, we systematically investigate whether complex robust training strategies remain necessary as model capacity grows. Through comprehensive experiments spanning multiple model architectures and parameter scales, we evaluate various document selection methods and adversarial training techniques across diverse datasets. Our extensive experiments consistently demonstrate that as models become more powerful, the performance gains brought by complex robust training methods drop off dramatically. We delve into the rationale and find that more powerful models inherently exhibit superior confidence calibration, better generalization across datasets (even when trained with randomly selected documents), and optimal attention mechanisms learned with simpler strategies. Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful, enabling more scalable applications with minimal complexity.
Abstract:A new trend uses LLMs as dense text encoders via contrastive learning. However, since LLM embeddings predict the probability distribution of the next token, they are inherently generative and distributive, conflicting with contrastive learning, which requires embeddings to capture full-text semantics and align via cosine similarity. This discrepancy hinders the full utilization of LLMs' pre-training capabilities, resulting in inefficient learning. In response to this issue, we propose AutoRegEmbed, a new contrastive learning method built on embedding conditional probability distributions, which integrates two core tasks: information compression and conditional distribution alignment. The information compression task encodes text into the embedding space, ensuring that the embedding vectors capture global semantics. The conditional distribution alignment task focuses on aligning text embeddings with positive samples embeddings by leveraging the conditional distribution of embeddings while simultaneously reducing the likelihood of generating negative samples from text embeddings, thereby achieving embedding alignment and uniformity. Experimental results demonstrate that our method significantly outperforms traditional contrastive learning approaches and achieves performance comparable to state-of-the-art models when using the same amount of data.
Abstract:The task of text-to-image generation has achieved tremendous success in practice, with emerging concept generation models capable of producing highly personalized and customized content. Fervor for concept generation is increasing rapidly among users, and platforms for concept sharing have sprung up. The concept owners may upload malicious concepts and disguise them with non-malicious text descriptions and example images to deceive users into downloading and generating malicious content. The platform needs a quick method to determine whether a concept is malicious to prevent the spread of malicious concepts. However, simply relying on concept image generation to judge whether a concept is malicious requires time and computational resources. Especially, as the number of concepts uploaded and downloaded on the platform continues to increase, this approach becomes impractical and poses a risk of generating malicious content. In this paper, we propose Concept QuickLook, the first systematic work to incorporate malicious concept detection into research, which performs detection based solely on concept files without generating any images. We define malicious concepts and design two work modes for detection: concept matching and fuzzy detection. Extensive experiments demonstrate that the proposed Concept QuickLook can detect malicious concepts and demonstrate practicality in concept sharing platforms. We also design robustness experiments to further validate the effectiveness of the solution. We hope this work can initiate malicious concept detection tasks and provide some inspiration.
Abstract:Communication enables the expansion of human visual perception beyond the limitations of time and distance, while computational imaging overcomes the constraints of depth and breadth. Although impressive achievements have been witnessed with the two types of technologies, the occlusive information flow between the two domains is a bottleneck hindering their ulterior progression. Herein, we propose a novel framework that integrates communication and computational imaging (ICCI) to break through the inherent isolation between communication and computational imaging for remote perception. By jointly considering the sensing and transmitting of remote visual information, the ICCI framework performs a full-link information transfer optimization, aiming to minimize information loss from the generation of the information source to the execution of the final vision tasks. We conduct numerical analysis and experiments to demonstrate the ICCI framework by integrating communication systems and snapshot compressive imaging systems. Compared with straightforward combination schemes, which sequentially execute sensing and transmitting, the ICCI scheme shows greater robustness against channel noise and impairments while achieving higher data compression. Moreover, an 80 km 27-band hyperspectral video perception with a rate of 30 fps is experimentally achieved. This new ICCI remote perception paradigm offers a highefficiency solution for various real-time computer vision tasks.
Abstract:Video generation requires modeling a vast spatiotemporal space, which demands significant computational resources and data usage. To reduce the complexity, the prevailing approaches employ a cascaded architecture to avoid direct training with full resolution. Despite reducing computational demands, the separate optimization of each sub-stage hinders knowledge sharing and sacrifices flexibility. This work introduces a unified pyramidal flow matching algorithm. It reinterprets the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution, thereby enabling more efficient video generative modeling. Through our sophisticated design, the flows of different pyramid stages can be interlinked to maintain continuity. Moreover, we craft autoregressive video generation with a temporal pyramid to compress the full-resolution history. The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT). Extensive experiments demonstrate that our method supports generating high-quality 5-second (up to 10-second) videos at 768p resolution and 24 FPS within 20.7k A100 GPU training hours. All code and models will be open-sourced at https://pyramid-flow.github.io.
Abstract:To effectively mitigate the influence of atmospheric turbulence, a novel discrete-time analog transmission free-space optical (DTAT-FSO) communication scheme is proposed. It directly maps information sources to discrete-time analog symbols via joint source-channel coding and modulation. Differently from traditional digital free space optical (TD-FSO) schemes, the proposed DTAT-FSO approach can automatically adapt to the variation of the channel state, with no need to adjust the specific modulation and coding scheme. The performance of the DTAT-FSO system was evaluated in both intensity modulation/direct detection (IM/DD) and coherent FSO systems for high-resolution image transmission. The results show that the DTAT-FSO reliably transmits images at low received optical powers (ROPs) and automatically enhances quality at high ROPs, while the TD-FSO experiences cliff and leveling effects when the channel state varies. With respect to the TD-FSO scheme, the DTAT-FSO scheme improved receiver sensitivity by 2.5 dB in the IM/DD FSO system and 0.8 dB in the coherent FSO system, and it achieved superior image fidelity under the same ROP. The automatic adaptation feature and improved performance of the DTAT-FSO suggest its potential for terrestrial, airborne, and satellite optical networks, addressing challenges posed by atmospheric turbulence.
Abstract:We proposed a low-complexity SVM-based signal recovery algorithm and evaluated it in 100G-PON with 25G-class devices. For the first time, it experimentally achieved 24 dB power budget @ FEC threshold 1E-3 over 40 km SMF, improving receiver sensitivity over 2 dB compared to FFE&DFE.
Abstract:We proposed and experimentally demonstrated a look-up table boosted fast CDR and equalization scheme for the burst-mode 50/100 Gbps bandwidth-limited flexible PON, requiring no preamble for convergence and achieved the same bit error rate performance as in the case of long preambles.