Abstract:Analog/Mixed-Signal (AMS) circuits play a critical role in the integrated circuit (IC) industry. However, automating Analog/Mixed-Signal (AMS) circuit design has remained a longstanding challenge due to its difficulty and complexity. Recent advances in Multi-modal Large Language Models (MLLMs) offer promising potential for supporting AMS circuit analysis and design. However, current research typically evaluates MLLMs on isolated tasks within the domain, lacking a comprehensive benchmark that systematically assesses model capabilities across diverse AMS-related challenges. To address this gap, we introduce AMSbench, a benchmark suite designed to evaluate MLLM performance across critical tasks including circuit schematic perception, circuit analysis, and circuit design. AMSbench comprises approximately 8000 test questions spanning multiple difficulty levels and assesses eight prominent models, encompassing both open-source and proprietary solutions such as Qwen 2.5-VL and Gemini 2.5 Pro. Our evaluation highlights significant limitations in current MLLMs, particularly in complex multi-modal reasoning and sophisticated circuit design tasks. These results underscore the necessity of advancing MLLMs' understanding and effective application of circuit-specific knowledge, thereby narrowing the existing performance gap relative to human expertise and moving toward fully automated AMS circuit design workflows. Our data is released at https://huggingface.co/datasets/wwhhyy/AMSBench
Abstract:Conventional analog and mixed-signal (AMS) circuit designs heavily rely on manual effort, which is time-consuming and labor-intensive. This paper presents a fully automated design methodology for Successive Approximation Register (SAR) Analog-to-Digital Converters (ADCs) from performance specifications to complete transistor sizing. To tackle the high-dimensional sizing problem, we propose a dual optimization scheme. The system-level optimization iteratively partitions the overall requirements and analytically maps them to subcircuit design specifications, while local optimization loops determines the subcircuits' design parameters. The dependency graph-based framework serializes the simulations for verification, knowledge-based calculations, and transistor sizing optimization in topological order, which eliminates the need for human intervention. We demonstrate the effectiveness of the proposed methodology through two case studies with varying performance specifications, achieving high SNDR and low power consumption while meeting all the specified design constraints.
Abstract:Detecting weak targets is one of the main challenges for integrated sensing and communication (ISAC) systems. Sensing and communication suffer from a performance trade-off in ISAC systems. As the communication demand increases, sensing ability, especially weak target detection performance, will inevitably reduce. Traditional approaches fail to address this issue. In this paper, we develop a joint beamforming scheme and formulate it as a max-min problem to maximize the detection probability of the weakest target under the constraint of the signal-to-interference-plus-noise ratio (SINR) of multi-user communication. An alternating optimization (AO) algorithm is developed for solving the complicated non-convex problem to obtain the joint beamformer. The proposed scheme can direct the transmit energy toward the multiple targets properly to ensure robust multi-target detection performance. Numerical results show that the proposed beamforming scheme can effectively increase the detection probability of the weakest target compared to baseline approaches while ensuring communication performance.