Abstract:Due to the profound impact of air pollution on human health, livelihoods, and economic development, air quality forecasting is of paramount significance. Initially, we employ the causal graph method to scrutinize the constraints of existing research in comprehensively modeling the causal relationships between the air quality index (AQI) and meteorological features. In order to enhance prediction accuracy, we introduce a novel air quality forecasting model, AirCade, which incorporates a causal decoupling approach. AirCade leverages a spatiotemporal module in conjunction with knowledge embedding techniques to capture the internal dynamics of AQI. Subsequently, a causal decoupling module is proposed to disentangle synchronous causality from past AQI and meteorological features, followed by the dissemination of acquired knowledge to future time steps to enhance performance. Additionally, we introduce a causal intervention mechanism to explicitly represent the uncertainty of future meteorological features, thereby bolstering the model's robustness. Our evaluation of AirCade on an open-source air quality dataset demonstrates over 20\% relative improvement over state-of-the-art models.
Abstract:Learning on molecule graphs has become an increasingly important topic in AI for science, which takes full advantage of AI to facilitate scientific discovery. Existing solutions on modeling molecules utilize Graph Neural Networks (GNNs) to achieve representations but they mostly fail to adapt models to out-of-distribution (OOD) samples. Although recent advances on OOD-oriented graph learning have discovered the invariant rationale on graphs, they still ignore three important issues, i.e., 1) the expanding atom patterns regarding environments on graphs lead to failures of invariant rationale based models, 2) the associations between discovered molecular subgraphs and corresponding properties are complex where causal substructures cannot fully interpret the labels. 3) the interactions between environments and invariances can influence with each other thus are challenging to be modeled. To this end, we propose a soft causal learning framework, to tackle the unresolved OOD challenge in molecular science, from the perspective of fully modeling the molecule environments and bypassing the invariant subgraphs. Specifically, we first incorporate chemistry theories into our graph growth generator to imitate expaned environments, and then devise an GIB-based objective to disentangle environment from whole graphs and finally introduce a cross-attention based soft causal interaction, which allows dynamic interactions between environments and invariances. We perform experiments on seven datasets by imitating different kinds of OOD generalization scenarios. Extensive comparison, ablation experiments as well as visualized case studies demonstrate well generalization ability of our proposal.
Abstract:Large language models (LLMs) have greatly accelerated the automation of algorithm generation and optimization. However, current methods such as EoH and FunSearch mainly rely on predefined templates and expert-specified functions that focus solely on the local evolution of key functionalities. Consequently, they fail to fully leverage the synergistic benefits of the overall architecture and the potential of global optimization. In this paper, we introduce an end-to-end algorithm generation and optimization framework based on LLMs. Our approach utilizes the deep semantic understanding of LLMs to convert natural language requirements or human-authored papers into code solutions, and employs a two-dimensional co-evolution strategy to optimize both functional and structural aspects. This closed-loop process spans problem analysis, code generation, and global optimization, automatically identifying key algorithm modules for multi-level joint optimization and continually enhancing performance and design innovation. Extensive experiments demonstrate that our method outperforms traditional local optimization approaches in both performance and innovation, while also exhibiting strong adaptability to unknown environments and breakthrough potential in structural design. By building on human research, our framework generates and optimizes novel algorithms that surpass those designed by human experts, broadening the applicability of LLMs for algorithm design and providing a novel solution pathway for automated algorithm development.
Abstract:Pre-training GNNs to extract transferable knowledge and apply it to downstream tasks has become the de facto standard of graph representation learning. Recent works focused on designing self-supervised pre-training tasks to extract useful and universal transferable knowledge from large-scale unlabeled data. However, they have to face an inevitable question: traditional pre-training strategies that aim at extracting useful information about pre-training tasks, may not extract all useful information about the downstream task. In this paper, we reexamine the pre-training process within traditional pre-training and fine-tuning frameworks from the perspective of Information Bottleneck (IB) and confirm that the forgetting phenomenon in pre-training phase may cause detrimental effects on downstream tasks. Therefore, we propose a novel \underline{D}elayed \underline{B}ottlenecking \underline{P}re-training (DBP) framework which maintains as much as possible mutual information between latent representations and training data during pre-training phase by suppressing the compression operation and delays the compression operation to fine-tuning phase to make sure the compression can be guided with labeled fine-tuning data and downstream tasks. To achieve this, we design two information control objectives that can be directly optimized and further integrate them into the actual model design. Extensive experiments on both chemistry and biology domains demonstrate the effectiveness of DBP.
Abstract:Spatiotemporal learning, which aims at extracting spatiotemporal correlations from the collected spatiotemporal data, is a research hotspot in recent years. And considering the inherent graph structure of spatiotemporal data, recent works focus on capturing spatial dependencies by utilizing Graph Convolutional Networks (GCNs) to aggregate vertex features with the guidance of adjacency matrices. In this paper, with extensive and deep-going experiments, we comprehensively analyze existing spatiotemporal graph learning models and reveal that extracting adjacency matrices with carefully design strategies, which are viewed as the key of enhancing performance on graph learning, are largely ineffective. Meanwhile, based on these experiments, we also discover that the aggregation itself is more important than the way that how vertices are aggregated. With these preliminary, a novel efficient Graph-Free Spatial (GFS) learning module based on layer normalization for capturing spatial correlations in spatiotemporal graph learning. The proposed GFS module can be easily plugged into existing models for replacing all graph convolution components. Rigorous theoretical proof demonstrates that the time complexity of GFS is significantly better than that of graph convolution operation. Extensive experiments verify the superiority of GFS in both the perspectives of efficiency and learning effect in processing graph-structured data especially extreme large scale graph data.