Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Provably Faster Algorithms for Bilevel Optimization and Applications to Meta-Learning

Oct 15, 2020
Kaiyi Ji, Junjie Yang, Yingbin Liang

* 30 pages, 14 figures, 3 tables 

  Access Paper or Ask Questions

Boosting One-Point Derivative-Free Online Optimization via Residual Feedback

Oct 14, 2020
Yan Zhang, Yi Zhou, Kaiyi Ji, Michael M. Zavlanos


  Access Paper or Ask Questions

Improving the Convergence Rate of One-Point Zeroth-Order Optimization using Residual Feedback

Jun 18, 2020
Yan Zhang, Yi Zhou, Kaiyi Ji, Michael M. Zavlanos


  Access Paper or Ask Questions

Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters

Jun 16, 2020
Kaiyi Ji, Jason D. Lee, Yingbin Liang, H. Vincent Poor

* 28 pages, 8 figures, 2 tables 

  Access Paper or Ask Questions

Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization

Feb 26, 2020
Yi Zhou, Zhe Wang, Kaiyi Ji, Yingbin Liang, Vahid Tarokh


  Access Paper or Ask Questions

Multi-Step Model-Agnostic Meta-Learning: Convergence and Improved Algorithms

Feb 20, 2020
Kaiyi Ji, Junjie Yang, Yingbin Liang

* 67 pages, 8 figures 

  Access Paper or Ask Questions

Robust Stochastic Bandit Algorithms under Probabilistic Unbounded Adversarial Attack

Feb 17, 2020
Ziwei Guan, Kaiyi Ji, Donald J Bucci Jr, Timothy Y Hu, Joseph Palombo, Michael Liston, Yingbin Liang

* Published at AAAI'20 

  Access Paper or Ask Questions

Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization

Oct 27, 2019
Kaiyi Ji, Zhe Wang, Yi Zhou, Yingbin Liang

* Published in ICML 2019 

  Access Paper or Ask Questions

Faster Stochastic Algorithms via History-Gradient Aided Batch Size Adaptation

Oct 21, 2019
Kaiyi Ji, Zhe Wang, Yi Zhou, Yingbin Liang


  Access Paper or Ask Questions

Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization

Feb 11, 2019
Yi Zhou, Zhe Wang, Kaiyi Ji, Yingbin Liang, Vahid Tarokh


  Access Paper or Ask Questions

Minimax Estimation of Neural Net Distance

Nov 02, 2018
Kaiyi Ji, Yingbin Liang

* To appear in Proc. NIPS 2018 

  Access Paper or Ask Questions

SpiderBoost: A Class of Faster Variance-reduced Algorithms for Nonconvex Optimization

Oct 25, 2018
Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh


  Access Paper or Ask Questions

When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?

Oct 15, 2018
Tengyu Xu, Yi Zhou, Kaiyi Ji, Yingbin Liang


  Access Paper or Ask Questions

Learning Latent Features with Pairwise Penalties in Matrix Completion

Feb 16, 2018
Kaiyi Ji, Jian Tan, Yuejie Chi, Jinfeng Xu

* 31 pages, 8 figures 

  Access Paper or Ask Questions