Abstract:This paper presents an in-depth investigation into the high-performance parallel optimization of the Fish School Behaviour (FSB) algorithm on the Setonix supercomputing platform using the OpenMP framework. Given the increasing demand for enhanced computational capabilities for complex, large-scale calculations across diverse domains, there's an imperative need for optimized parallel algorithms and computing structures. The FSB algorithm, inspired by nature's social behavior patterns, provides an ideal platform for parallelization due to its iterative and computationally intensive nature. This study leverages the capabilities of the Setonix platform and the OpenMP framework to analyze various aspects of multi-threading, such as thread counts, scheduling strategies, and OpenMP constructs, aiming to discern patterns and strategies that can elevate program performance. Experiments were designed to rigorously test different configurations, and our results not only offer insights for parallel optimization of FSB on Setonix but also provide valuable references for other parallel computational research using OpenMP. Looking forward, other factors, such as cache behavior and thread scheduling strategies at micro and macro levels, hold potential for further exploration and optimization.
Abstract:The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts. This study constructs a tailored multispectral remote sensing dataset and an end-to-end framework for weed detection to advance precision agriculture practices. Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas (E2 and E8) over four years, covering 0.6046 km^{2} and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops. The dataset is specifically designed for agricultural applications in Western Australia. We propose an end-to-end framework for weed detection that includes extensive preprocessing steps, such as denoising, radiometric calibration, image alignment, orthorectification, and stitching. The proposed method combines vegetation indices (NDVI, GNDVI, EVI, SAVI, MSAVI) with multispectral channels to form classification features, and employs several deep learning models to identify weeds based on the input features. Among these models, ResNet achieves the highest performance, with a weed detection accuracy of 0.9213, an F1-Score of 0.8735, an mIOU of 0.7888, and an mDC of 0.8865, validating the efficacy of the dataset and the proposed weed detection method.