Abstract:Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs). Using the channel state information (CSI) across multiple frequency bands, RIS-aided multi-band ISAC systems can potentially track users' positions with high precision. Though tracking with CSI is desirable as no communication overheads are incurred, it faces challenges due to the multi-modalities of CSI samples, irregular and asynchronous data traffic, and sparse labeled data for learning the tracking function. This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner, tackling the sparsity of labeled data for the target deployment environment (namely, target domain) by adapting the knowledge learned from another environment (namely, source domain). Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques. Simulation results verify that X2Track achieves decimeter-level axial tracking errors even under scarce UL data traffic and strong interference conditions and can adapt to diverse deployment environments with fewer than 5% training data, or equivalently, 5 minutes of UE tracks, being labeled.
Abstract:Mobile manipulators always need to determine feasible base positions prior to carrying out navigation-manipulation tasks. Real-world environments are often cluttered with various furniture, obstacles, and dozens of other objects. Efficiently computing base positions poses a challenge. In this work, we introduce a framework named MoMa-Pos to address this issue. MoMa-Pos first learns to predict a small set of objects that, taken together, would be sufficient for finding base positions using a graph embedding architecture. MoMa-Pos then calculates standing positions by considering furniture structures, robot models, and obstacles comprehensively. We have extensively evaluated the proposed MoMa-Pos across different settings (e.g., environment and algorithm parameters) and with various mobile manipulators. Our empirical results show that MoMa-Pos demonstrates remarkable effectiveness and efficiency in its performance, surpassing the methods in the literature. %, but also is adaptable to cluttered environments and different robot models. Supplementary material can be found at \url{https://yding25.com/MoMa-Pos}.
Abstract:Code understanding and generation have fast become some of the most popular applications of language models (LMs). Nonetheless, research on multilingual aspects of Code-LMs (i.e., LMs for code generation) such as cross-lingual transfer between different programming languages, language-specific data augmentation, and post-hoc LM adaptation, alongside exploitation of data sources other than the original textual content, has been much sparser than for their natural language counterparts. In particular, most mainstream Code-LMs have been pre-trained on source code files alone. In this work, we investigate the prospect of leveraging readily available compiler intermediate representations - shared across programming languages - to improve the multilingual capabilities of Code-LMs and facilitate cross-lingual transfer. To this end, we first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files coupled with respective intermediate representations. Next, starting from various base Code-LMs (ranging in size from 1.1B to 7.3B parameters), we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to (1) learn the IR language and (2) align the IR constructs with respective constructs of various programming languages. Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics, including prompt robustness, multilingual code completion, code understanding, and instruction following.
Abstract:This paper addresses a multi-echelon inventory management problem with a complex network topology where deriving optimal ordering decisions is difficult. Deep reinforcement learning (DRL) has recently shown potential in solving such problems, while designing the neural networks in DRL remains a challenge. In order to address this, a DRL model is developed whose Q-network is based on radial basis functions. The approach can be more easily constructed compared to classic DRL models based on neural networks, thus alleviating the computational burden of hyperparameter tuning. Through a series of simulation experiments, the superior performance of this approach is demonstrated compared to the simple base-stock policy, producing a better policy in the multi-echelon system and competitive performance in the serial system where the base-stock policy is optimal. In addition, the approach outperforms current DRL approaches.
Abstract:In the field of Industrial Informatics, interactive segmentation has gained significant attention for its application in human-computer interaction and data annotation. Existing algorithms, however, face challenges in balancing the segmentation accuracy between large and small targets, often leading to an increased number of user interactions. To tackle this, a novel multi-scale token adaptation algorithm, leveraging token similarity, has been devised to enhance segmentation across varying target sizes. This algorithm utilizes a differentiable top-k tokens selection mechanism, allowing for fewer tokens to be used while maintaining efficient multi-scale token interaction. Furthermore, a contrastive loss is introduced to better discriminate between target and background tokens, improving the correctness and robustness of the tokens similar to the target. Extensive benchmarking shows that the algorithm achieves state-of-the-art (SOTA) performance compared to current methods. An interactive demo and all reproducible codes will be released at https://github.com/hahamyt/mst.
Abstract:Neural radiance fields (NeRF) typically require a complete set of images taken from multiple camera perspectives to accurately reconstruct geometric details. However, this approach raise significant privacy concerns in the context of facial reconstruction. The critical need for privacy protection often leads invidividuals to be reluctant in sharing their facial images, due to fears of potential misuse or security risks. Addressing these concerns, we propose a method that leverages privacy-preserving images for reconstructing 3D head geometry within the NeRF framework. Our method stands apart from traditional facial reconstruction techniques as it does not depend on RGB information from images containing sensitive facial data. Instead, it effectively generates plausible facial geometry using a series of identity-obscured inputs, thereby protecting facial privacy.
Abstract:Transformer models have demonstrated remarkable performance in neural machine translation (NMT). However, their vulnerability to noisy input poses a significant challenge in practical implementation, where generating clean output from noisy input is crucial. The MTNT dataset is widely used as a benchmark for evaluating the robustness of NMT models against noisy input. Nevertheless, its utility is limited due to the presence of noise in both the source and target sentences. To address this limitation, we focus on cleaning the noise from the target sentences in MTNT, making it more suitable as a benchmark for noise evaluation. Leveraging the capabilities of large language models (LLMs), we observe their impressive abilities in noise removal. For example, they can remove emojis while considering their semantic meaning. Additionally, we show that LLM can effectively rephrase slang, jargon, and profanities. The resulting datasets, called C-MTNT, exhibit significantly less noise in the target sentences while preserving the semantic integrity of the original sentences. Our human and GPT-4 evaluations also lead to a consistent conclusion that LLM performs well on this task. Lastly, experiments on C-MTNT showcased its effectiveness in evaluating the robustness of NMT models, highlighting the potential of advanced language models for data cleaning and emphasizing C-MTNT as a valuable resource.
Abstract:Positioning is an essential service for various applications and is expected to be integrated with existing communication infrastructures in 5G and 6G. Though current Wi-Fi and cellular base stations (BSs) can be used to support this integration, the resulting precision is unsatisfactory due to the lack of precise control of the wireless signals. Recently, BSs adopting reconfigurable holographic surfaces (RHSs) have been advocated for positioning as RHSs' large number of antenna elements enable generation of arbitrary and highly-focused signal beam patterns. However, existing designs face two major challenges: i) RHSs only have limited operating bandwidth, and ii) the positioning methods cannot adapt to the diverse environments encountered in practice. To overcome these challenges, we present HoloFed, a system providing high-precision environment-adaptive user positioning services by exploiting multi-band(MB)-RHS and federated learning (FL). For improving the positioning performance, a lower bound on the error variance is obtained and utilized for guiding MB-RHS's digital and analog beamforming design. For better adaptability while preserving privacy, an FL framework is proposed for users to collaboratively train a position estimator, where we exploit the transfer learning technique to handle the lack of position labels of the users. Moreover, a scheduling algorithm for the BS to select which users train the position estimator is designed, jointly considering the convergence and efficiency of FL. Our simulation results confirm that HoloFed achieves a 57% lower positioning error variance compared to a beam-scanning baseline and can effectively adapt to diverse environments.
Abstract:Hand Pose Estimation (HPE) is crucial to many applications, but conventional cameras-based CM-HPE methods are completely subject to Line-of-Sight (LoS), as cameras cannot capture occluded objects. In this paper, we propose to exploit Radio-Frequency-Vision (RF-vision) capable of bypassing obstacles for achieving occluded HPE, and we introduce OCHID-Fi as the first RF-HPE method with 3D pose estimation capability. OCHID-Fi employs wideband RF sensors widely available on smart devices (e.g., iPhones) to probe 3D human hand pose and extract their skeletons behind obstacles. To overcome the challenge in labeling RF imaging given its human incomprehensible nature, OCHID-Fi employs a cross-modality and cross-domain training process. It uses a pre-trained CM-HPE network and a synchronized CM/RF dataset, to guide the training of its complex-valued RF-HPE network under LoS conditions. It further transfers knowledge learned from labeled LoS domain to unlabeled occluded domain via adversarial learning, enabling OCHID-Fi to generalize to unseen occluded scenarios. Experimental results demonstrate the superiority of OCHID-Fi: it achieves comparable accuracy to CM-HPE under normal conditions while maintaining such accuracy even in occluded scenarios, with empirical evidence for its generalizability to new domains.
Abstract:Personalized Federated Learning (PFL) represents a promising solution for decentralized learning in heterogeneous data environments. Partial model personalization has been proposed to improve the efficiency of PFL by selectively updating local model parameters instead of aggregating all of them. However, previous work on partial model personalization has mainly focused on Convolutional Neural Networks (CNNs), leaving a gap in understanding how it can be applied to other popular models such as Vision Transformers (ViTs). In this work, we investigate where and how to partially personalize a ViT model. Specifically, we empirically evaluate the sensitivity to data distribution of each type of layer. Based on the insights that the self-attention layer and the classification head are the most sensitive parts of a ViT, we propose a novel approach called FedPerfix, which leverages plugins to transfer information from the aggregated model to the local client as a personalization. Finally, we evaluate the proposed approach on CIFAR-100, OrganAMNIST, and Office-Home datasets and demonstrate its effectiveness in improving the model's performance compared to several advanced PFL methods.