Abstract:The demand of customized large language models (LLMs) has led to commercial LLMs offering black-box fine-tuning APIs, yet this convenience introduces a critical security loophole: attackers could jailbreak the LLMs by fine-tuning them with malicious data. Though this security issue has recently been exposed, the feasibility of such attacks is questionable as malicious training dataset is believed to be detectable by moderation models such as Llama-Guard-3. In this paper, we propose TrojanPraise, a novel finetuning-based attack exploiting benign and thus filter-approved data. Basically, TrojanPraise fine-tunes the model to associate a crafted word (e.g., "bruaf") with harmless connotations, then uses this word to praise harmful concepts, subtly shifting the LLM from refusal to compliance. To explain the attack, we decouple the LLM's internal representation of a query into two dimensions of knowledge and attitude. We demonstrate that successful jailbreak requires shifting the attitude while avoiding knowledge shift, a distortion in the model's understanding of the concept. To validate this attack, we conduct experiments on five opensource LLMs and two commercial LLMs under strict black-box settings. Results show that TrojanPraise achieves a maximum attack success rate of 95.88% while evading moderation.
Abstract:Though deep neural models adopted to realize the perception of autonomous driving have proven vulnerable to adversarial examples, known attacks often leverage 2D patches and target mostly monocular perception. Therefore, the effectiveness of Physical Adversarial Examples (PAEs) on stereo-based binocular depth estimation remains largely unexplored. To this end, we propose the first texture-enabled physical adversarial attack against stereo matching models in the context of autonomous driving. Our method employs a 3D PAE with global camouflage texture rather than a local 2D patch-based one, ensuring both visual consistency and attack effectiveness across different viewpoints of stereo cameras. To cope with the disparity effect of these cameras, we also propose a new 3D stereo matching rendering module that allows the PAE to be aligned with real-world positions and headings in binocular vision. We further propose a novel merging attack that seamlessly blends the target into the environment through fine-grained PAE optimization. It has significantly enhanced stealth and lethality upon existing hiding attacks that fail to get seamlessly merged into the background. Extensive evaluations show that our PAEs can successfully fool the stereo models into producing erroneous depth information.




Abstract:Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.
Abstract:Diffusion Large Language Models (dLLMs) have recently emerged as a competitive non-autoregressive paradigm due to their unique training and inference approach. However, there is currently a lack of safety study on this novel architecture. In this paper, we present the first analysis of dLLMs' safety performance and propose a novel safety alignment method tailored to their unique generation characteristics. Specifically, we identify a critical asymmetry between the defender and attacker in terms of security. For the defender, we reveal that the middle tokens of the response, rather than the initial ones, are more critical to the overall safety of dLLM outputs; this seems to suggest that aligning middle tokens can be more beneficial to the defender. The attacker, on the contrary, may have limited power to manipulate middle tokens, as we find dLLMs have a strong tendency towards a sequential generation order in practice, forcing the attack to meet this distribution and diverting it from influencing the critical middle tokens. Building on this asymmetry, we introduce Middle-tOken Safety Alignment (MOSA), a novel method that directly aligns the model's middle generation with safe refusals exploiting reinforcement learning. We implement MOSA and compare its security performance against eight attack methods on two benchmarks. We also test the utility of MOSA-aligned dLLM on coding, math, and general reasoning. The results strongly prove the superiority of MOSA.
Abstract:Recent advancements in multimodal large language models (MLLMs) have demonstrated exceptional performance in multimodal perception and understanding. However, leading open-source MLLMs exhibit significant limitations in complex and structured reasoning, particularly in tasks requiring deep reasoning for decision-making and problem-solving. In this work, we present Corvid, an MLLM with enhanced chain-of-thought (CoT) reasoning capabilities. Architecturally, Corvid incorporates a hybrid vision encoder for informative visual representation and a meticulously designed connector (GateMixer) to facilitate cross-modal alignment. To enhance Corvid's CoT reasoning capabilities, we introduce MCoT-Instruct-287K, a high-quality multimodal CoT instruction-following dataset, refined and standardized from diverse public reasoning sources. Leveraging this dataset, we fine-tune Corvid with a two-stage CoT-formatted training approach to progressively enhance its step-by-step reasoning abilities. Furthermore, we propose an effective inference-time scaling strategy that enables Corvid to mitigate over-reasoning and under-reasoning through self-verification. Extensive experiments demonstrate that Corvid outperforms existing o1-like MLLMs and state-of-the-art MLLMs with similar parameter scales, with notable strengths in mathematical reasoning and science problem-solving. Project page: https://mm-vl.github.io/corvid.
Abstract:Neural radiance fields (NeRF) typically require a complete set of images taken from multiple camera perspectives to accurately reconstruct geometric details. However, this approach raise significant privacy concerns in the context of facial reconstruction. The critical need for privacy protection often leads invidividuals to be reluctant in sharing their facial images, due to fears of potential misuse or security risks. Addressing these concerns, we propose a method that leverages privacy-preserving images for reconstructing 3D head geometry within the NeRF framework. Our method stands apart from traditional facial reconstruction techniques as it does not depend on RGB information from images containing sensitive facial data. Instead, it effectively generates plausible facial geometry using a series of identity-obscured inputs, thereby protecting facial privacy.