Fred
Abstract:The growing need for instant spoken language transcription and translation is driven by increased global communication and cross-lingual interactions. This has made offering translations in multiple languages essential for user applications. Traditional approaches to automatic speech recognition (ASR) and speech translation (ST) have often relied on separate systems, leading to inefficiencies in computational resources, and increased synchronization complexity in real time. In this paper, we propose a streaming Transformer-Transducer (T-T) model able to jointly produce many-to-one and one-to-many transcription and translation using a single decoder. We introduce a novel method for joint token-level serialized output training based on timestamp information to effectively produce ASR and ST outputs in the streaming setting. Experiments on {it,es,de}->en prove the effectiveness of our approach, enabling the generation of one-to-many joint outputs with a single decoder for the first time.
Abstract:It is typically challenging for visual or visual-inertial odometry systems to handle the problems of dynamic scenes and pure rotation. In this work, we design a novel visual-inertial odometry (VIO) system called RD-VIO to handle both of these two problems. Firstly, we propose an IMU-PARSAC algorithm which can robustly detect and match keypoints in a two-stage process. In the first state, landmarks are matched with new keypoints using visual and IMU measurements. We collect statistical information from the matching and then guide the intra-keypoint matching in the second stage. Secondly, to handle the problem of pure rotation, we detect the motion type and adapt the deferred-triangulation technique during the data-association process. We make the pure-rotational frames into the special subframes. When solving the visual-inertial bundle adjustment, they provide additional constraints to the pure-rotational motion. We evaluate the proposed VIO system on public datasets. Experiments show the proposed RD-VIO has obvious advantages over other methods in dynamic environments.
Abstract:Due to the powerful edge-preserving ability and low computational complexity, Guided image filter (GIF) and its improved versions has been widely applied in computer vision and image processing. However, all of them are suffered halo artifacts to some degree, as the regularization parameter increase. In the case of inconsistent structure of guidance image and input image, edge-preserving ability degradation will also happen. In this paper, a novel guided image filter is proposed by integrating an explicit first-order edge-protect constraint and an explicit residual constraint which will improve the edge-preserving ability in both cases. To illustrate the efficiency of the proposed filter, the performances are shown in some typical applications, which are single image detail enhancement, multi-scale exposure fusion, hyper spectral images classification. Both theoretical analysis and experimental results prove that the powerful edge-preserving ability of the proposed filter.
Abstract:Simultaneous Speech-to-Text translation serves a critical role in real-time crosslingual communication. Despite the advancements in recent years, challenges remain in achieving stability in the translation process, a concern primarily manifested in the flickering of partial results. In this paper, we propose a novel revision-controllable method designed to address this issue. Our method introduces an allowed revision window within the beam search pruning process to screen out candidate translations likely to cause extensive revisions, leading to a substantial reduction in flickering and, crucially, providing the capability to completely eliminate flickering. The experiments demonstrate the proposed method can significantly improve the decoding stability without compromising substantially on the translation quality.
Abstract:Memory constraint of always-on devices is one of the major concerns when deploying speech processing models on these devices. While larger models trained with sufficiently large amount of data generally perform better, making them fit in the device memory is a demanding challenge. In this paper, we aim to reduce model size by reparameterizing model weights across Transformer encoder layers and assuming a special weight composition and structure. More specifically, inspired by ResNet and the more recent LoRA work, we propose an approach named ResidualTransformer, where each weight matrix in a Transformer layer comprises 1) a shared full-rank component with its adjacent layers, and 2) a unique low-rank component to itself. The low-rank matrices only account for a small amount of model size increase. In addition, we add diagonal weight matrices to improve modeling capacity of the low-rank matrices. Experiments of our 10k-hour speech recognition and speech translation tasks show that the Transformer encoder size can be reduced by ~3X with very slight performance degradation.
Abstract:Token-level serialized output training (t-SOT) was recently proposed to address the challenge of streaming multi-talker automatic speech recognition (ASR). T-SOT effectively handles overlapped speech by representing multi-talker transcriptions as a single token stream with $\langle \text{cc}\rangle$ symbols interspersed. However, the use of a naive neural transducer architecture significantly constrained its applicability for text-only adaptation. To overcome this limitation, we propose a novel t-SOT model structure that incorporates the idea of factorized neural transducers (FNT). The proposed method separates a language model (LM) from the transducer's predictor and handles the unnatural token order resulting from the use of $\langle \text{cc}\rangle$ symbols in t-SOT. We achieve this by maintaining multiple hidden states and introducing special handling of the $\langle \text{cc}\rangle$ tokens within the LM. The proposed t-SOT FNT model achieves comparable performance to the original t-SOT model while retaining the ability to reduce word error rate (WER) on both single and multi-talker datasets through text-only adaptation.
Abstract:End-to-end speech translation (ST) for conversation recordings involves several under-explored challenges such as speaker diarization (SD) without accurate word time stamps and handling of overlapping speech in a streaming fashion. In this work, we propose DiariST, the first streaming ST and SD solution. It is built upon a neural transducer-based streaming ST system and integrates token-level serialized output training and t-vector, which were originally developed for multi-talker speech recognition. Due to the absence of evaluation benchmarks in this area, we develop a new evaluation dataset, DiariST-AliMeeting, by translating the reference Chinese transcriptions of the AliMeeting corpus into English. We also propose new metrics, called speaker-agnostic BLEU and speaker-attributed BLEU, to measure the ST quality while taking SD accuracy into account. Our system achieves a strong ST and SD capability compared to offline systems based on Whisper, while performing streaming inference for overlapping speech. To facilitate the research in this new direction, we release the evaluation data, the offline baseline systems, and the evaluation code.
Abstract:Recent advancements in generative speech models based on audio-text prompts have enabled remarkable innovations like high-quality zero-shot text-to-speech. However, existing models still face limitations in handling diverse audio-text speech generation tasks involving transforming input speech and processing audio captured in adverse acoustic conditions. This paper introduces SpeechX, a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks, dealing with both clean and noisy signals. SpeechX combines neural codec language modeling with multi-task learning using task-dependent prompting, enabling unified and extensible modeling and providing a consistent way for leveraging textual input in speech enhancement and transformation tasks. Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise, achieving comparable or superior performance to specialized models across tasks. See https://aka.ms/speechx for demo samples.
Abstract:In end-to-end automatic speech recognition system, one of the difficulties for language expansion is the limited paired speech and text training data. In this paper, we propose a novel method to generate augmented samples with unpaired speech feature segments and text data for model pre-training, which has the advantage of low cost without using additional speech data. When mixing 20,000 hours augmented speech data generated by our method with 12,500 hours original transcribed speech data for Italian Transformer transducer model pre-training, we achieve 8.7% relative word error rate reduction. The pre-trained model achieves similar performance as the model pre-trained with multilingual transcribed 75,000 hours raw speech data. When merging the augmented speech data with the multilingual data to pre-train a new model, we achieve even more relative word error rate reduction of 12.2% over the baseline, which further verifies the effectiveness of our method for speech data augmentation.
Abstract:Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion.