Abstract:Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets. We first find a rapid degradation of detection accuracy when models are directly trained on combined datasets due to the discrepancy across collection scenarios and generation methods. To address the above issue, a Generalized Multi-Scenario Deepfake Detection framework (GM-DF) is proposed to serve multiple real-world scenarios by a unified model. First, we propose a hybrid expert modeling approach for domain-specific real/forgery feature extraction. Besides, as for the commonality representation, we use CLIP to extract the common features for better aligning visual and textual features across domains. Meanwhile, we introduce a masked image reconstruction mechanism to force models to capture rich forged details. Finally, we supervise the models via a domain-aware meta-learning strategy to further enhance their generalization capacities. Specifically, we design a novel domain alignment loss to strongly align the distributions of the meta-test domains and meta-train domains. Thus, the updated models are able to represent both specific and common real/forgery features across multiple datasets. In consideration of the lack of study of multi-dataset training, we establish a new benchmark leveraging multi-source data to fairly evaluate the models' generalization capacity on unseen scenarios. Both qualitative and quantitative experiments on five datasets conducted on traditional protocols as well as the proposed benchmark demonstrate the effectiveness of our approach.
Abstract:Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.
Abstract:Despite the growing success of 3D-aware GANs, which can be trained on 2D images to generate high-quality 3D assets, they still rely on multi-view images with camera annotations to synthesize sufficient details from all viewing directions. However, the scarce availability of calibrated multi-view image datasets, especially in comparison to single-view images, has limited the potential of 3D GANs. Moreover, while bypassing camera pose annotations with a camera distribution constraint reduces dependence on exact camera parameters, it still struggles to generate a consistent orientation of 3D assets. To this end, we propose SYM3D, a novel 3D-aware GAN designed to leverage the prevalent reflectional symmetry structure found in natural and man-made objects, alongside a proposed view-aware spatial attention mechanism in learning the 3D representation. We evaluate SYM3D on both synthetic (ShapeNet Chairs, Cars, and Airplanes) and real-world datasets (ABO-Chair), demonstrating its superior performance in capturing detailed geometry and texture, even when trained on only single-view images. Finally, we demonstrate the effectiveness of incorporating symmetry regularization in helping reduce artifacts in the modeling of 3D assets in the text-to-3D task.
Abstract:Federated representation learning (FRL) is a popular personalized federated learning (FL) framework where clients work together to train a common representation while retaining their personalized heads. Existing studies, however, largely focus on the over-parameterized regime. In this paper, we make the initial efforts to investigate FRL in the under-parameterized regime, where the FL model is insufficient to express the variations in all ground-truth models. We propose a novel FRL algorithm FLUTE, and theoretically characterize its sample complexity and convergence rate for linear models in the under-parameterized regime. To the best of our knowledge, this is the first FRL algorithm with provable performance guarantees in this regime. FLUTE features a data-independent random initialization and a carefully designed objective function that aids the distillation of subspace spanned by the global optimal representation from the misaligned local representations. On the technical side, we bridge low-rank matrix approximation techniques with the FL analysis, which may be of broad interest. We also extend FLUTE beyond linear representations. Experimental results demonstrate that FLUTE outperforms state-of-the-art FRL solutions in both synthetic and real-world tasks.
Abstract:Crowdsourcing is a critical technology in social manufacturing, which leverages an extensive and boundless reservoir of human resources to handle a wide array of complex tasks. The successful execution of these complex tasks relies on task decomposition (TD) and allocation, with the former being a prerequisite for the latter. Recently, pre-trained language models (PLMs)-based methods have garnered significant attention. However, they are constrained to handling straightforward common-sense tasks due to their inherent restrictions involving limited and difficult-to-update knowledge as well as the presence of hallucinations. To address these issues, we propose a retrieval-augmented generation-based crowdsourcing framework that reimagines TD as event detection from the perspective of natural language understanding. However, the existing detection methods fail to distinguish differences between event types and always depend on heuristic rules and external semantic analyzing tools. Therefore, we present a Prompt-Based Contrastive learning framework for TD (PBCT), which incorporates a prompt-based trigger detector to overcome dependence. Additionally, trigger-attentive sentinel and masked contrastive learning are introduced to provide varying attention to trigger and contextual features according to different event types. Experiment results demonstrate the competitiveness of our method in both supervised and zero-shot detection. A case study on printed circuit board manufacturing is showcased to validate its adaptability to unknown professional domains.
Abstract:By equipping the most recent 3D Gaussian Splatting representation with head 3D morphable models (3DMM), existing methods manage to create head avatars with high fidelity. However, most existing methods only reconstruct a head without the body, substantially limiting their application scenarios. We found that naively applying Gaussians to model the clothed chest and shoulders tends to result in blurry reconstruction and noisy floaters under novel poses. This is because of the fundamental limitation of Gaussians and point clouds -- each Gaussian or point can only have a single directional radiance without spatial variance, therefore an unnecessarily large number of them is required to represent complicated spatially varying texture, even for simple geometry. In contrast, we propose to model the body part with a neural texture that consists of coarse and pose-dependent fine colors. To properly render the body texture for each view and pose without accurate geometry nor UV mapping, we optimize another sparse set of Gaussians as anchors that constrain the neural warping field that maps image plane coordinates to the texture space. We demonstrate that Gaussian Head & Shoulders can fit the high-frequency details on the clothed upper body with high fidelity and potentially improve the accuracy and fidelity of the head region. We evaluate our method with casual phone-captured and internet videos and show our method archives superior reconstruction quality and robustness in both self and cross reenactment tasks. To fully utilize the efficient rendering speed of Gaussian splatting, we additionally propose an accelerated inference method of our trained model without Multi-Layer Perceptron (MLP) queries and reach a stable rendering speed of around 130 FPS for any subjects.
Abstract:Image restoration is a challenging ill-posed problem which estimates latent sharp image from its degraded counterpart. Although the existing methods have achieved promising performance by designing novelty architecture of module, they ignore the fact that different regions in a corrupted image undergo varying degrees of degradation. In this paper, we propose an efficient and effective framework to adapt to varying degrees of degradation across different regions for image restoration. Specifically, we design a spatial and frequency attention mechanism (SFAM) to emphasize crucial features for restoration. SFAM consists of two modules: the spatial domain attention module (SDAM) and the frequency domain attention module (FDAM). The SFAM discerns the degradation location through spatial selective attention and channel selective attention in the spatial domain, while the FDAM enhances high-frequency signals to amplify the disparities between sharp and degraded image pairs in the spectral domain. Additionally, to capture global range information, we introduce a multi-scale block (MSBlock) that consists of three scale branches, each containing multiple simplified channel attention blocks (SCABlocks) and a multi-scale feed-forward block (MSFBlock). Finally, we propose our ECFNet, which integrates the aforementioned components into a U-shaped backbone for recovering high-quality images. Extensive experimental results demonstrate the effectiveness of ECFNet, outperforming state-of-the-art (SOTA) methods on both synthetic and real-world datasets.
Abstract:Temporal knowledge graphs (TKGs) can effectively model the ever-evolving nature of real-world knowledge, and their completeness and enhancement can be achieved by reasoning new events from existing ones. However, reasoning accuracy is adversely impacted due to an imbalance between new and recurring events in the datasets. To achieve more accurate TKG reasoning, we propose an attention masking-based contrastive event network (AMCEN) with local-global temporal patterns for the two-stage prediction of future events. In the network, historical and non-historical attention mask vectors are designed to control the attention bias towards historical and non-historical entities, acting as the key to alleviating the imbalance. A local-global message-passing module is proposed to comprehensively consider and capture multi-hop structural dependencies and local-global temporal evolution for the in-depth exploration of latent impact factors of different event types. A contrastive event classifier is used to classify events more accurately by incorporating local-global temporal patterns into contrastive learning. Therefore, AMCEN refines the prediction scope with the results of the contrastive event classification, followed by utilizing attention masking-based decoders to finalize the specific outcomes. The results of our experiments on four benchmark datasets highlight the superiority of AMCEN. Especially, the considerable improvements in Hits@1 prove that AMCEN can make more precise predictions about future occurrences.
Abstract:Deep learning has emerged as a promising approach for learning the nonlinear mapping between diffusion-weighted MR images and tissue parameters, which enables automatic and deep understanding of the brain microstructures. However, the efficiency and accuracy in the multi-parametric estimations are still limited since previous studies tend to estimate multi-parametric maps with dense sampling and isolated signal modeling. This paper proposes DeepMpMRI, a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models using sparsely sampled q-space data. DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details by exploiting the correlation across parameters. In addition, we introduce a Nesterov-based adaptive learning algorithm that optimizes the regularization parameter dynamically to enhance the performance. DeepMpMRI is an extendable framework capable of incorporating flexible network architecture. Experimental results demonstrate the superiority of our approach over 5 state-of-the-art methods in simultaneously estimating multi-parametric maps for various diffusion models with fine-grained details both quantitatively and qualitatively, achieving 4.5 - 22.5$\times$ acceleration compared to the dense sampling of a total of 270 diffusion gradients.
Abstract:MCTS-based algorithms, such as MuZero and its derivatives, have achieved widespread success in various decision-making domains. These algorithms employ the reanalyze process to enhance sample efficiency, albeit at the expense of significant wall-clock time consumption. To address this issue, we propose a general approach named ReZero to boost MCTS-based algorithms. Specifically, we propose a new scheme that simplifies data collecting and reanalyzing, which significantly reduces the search cost while guarantees the performance as well. Furthermore, to accelerate each search process, we conceive a method to reuse the subsequent information in the trajectory. The corresponding analysis conducted on the bandit model also provides auxiliary theoretical substantiation for our design. Experiments conducted on Atari environments and board games demonstrates that ReZero substantially improves training speed while maintaining high sample efficiency. The code is available as part of the LightZero benchmark at https://github.com/opendilab/LightZero.