Abstract:The majority of parameters in neural networks are naturally represented as matrices. However, most commonly used optimizers treat these matrix parameters as flattened vectors during optimization, potentially overlooking their inherent structural properties. Recently, an optimizer called Muon has been proposed, specifically designed to optimize matrix-structured parameters. Extensive empirical evidence shows that Muon can significantly outperform traditional optimizers when training neural networks. Nonetheless, the theoretical understanding of Muon's convergence behavior and the reasons behind its superior performance remain limited. In this work, we present a comprehensive convergence rate analysis of Muon and its comparison with Gradient Descent (GD). We further characterize the conditions under which Muon can outperform GD. Our theoretical results reveal that Muon can benefit from the low-rank and approximate blockwise diagonal structure of Hessian matrices -- phenomena widely observed in practical neural network training. Our experimental results support and corroborate the theoretical findings.
Abstract:In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle diverse tasks by incorporating multiple input-output examples, known as demonstrations, into the input of LLMs. More recently, advancements in the expanded context windows of LLMs have led to many-shot ICL, which uses hundreds of demonstrations and outperforms few-shot ICL, which relies on fewer examples. However, this approach is often hindered by the high cost of obtaining large amounts of labeled data. To address this challenge, we propose Many-Shot Adaptive Pseudo-LabEling, namely MAPLE, a novel influence-based many-shot ICL framework that utilizes pseudo-labeled samples to compensate for the lack of label information. We first identify a subset of impactful unlabeled samples and perform pseudo-labeling on them by querying LLMs. These pseudo-labeled samples are then adaptively selected and tailored to each test query as input to improve the performance of many-shot ICL, without significant labeling costs. Extensive experiments on real-world datasets demonstrate the effectiveness of our framework, showcasing its ability to enhance LLM adaptability and performance with limited labeled data.
Abstract:This paper investigates a hybrid learning framework for reinforcement learning (RL) in which the agent can leverage both an offline dataset and online interactions to learn the optimal policy. We present a unified algorithm and analysis and show that augmenting confidence-based online RL algorithms with the offline dataset outperforms any pure online or offline algorithm alone and achieves state-of-the-art results under two learning metrics, i.e., sub-optimality gap and online learning regret. Specifically, we show that our algorithm achieves a sub-optimality gap $\tilde{O}(\sqrt{1/(N_0/\mathtt{C}(\pi^*|\rho)+N_1}) )$, where $\mathtt{C}(\pi^*|\rho)$ is a new concentrability coefficient, $N_0$ and $N_1$ are the numbers of offline and online samples, respectively. For regret minimization, we show that it achieves a constant $\tilde{O}( \sqrt{N_1/(N_0/\mathtt{C}(\pi^{-}|\rho)+N_1)} )$ speed-up compared to pure online learning, where $\mathtt{C}(\pi^-|\rho)$ is the concentrability coefficient over all sub-optimal policies. Our results also reveal an interesting separation on the desired coverage properties of the offline dataset for sub-optimality gap minimization and regret minimization. We further validate our theoretical findings in several experiments in special RL models such as linear contextual bandits and Markov decision processes (MDPs).
Abstract:Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner while preserving data privacy. However, FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes. Such an assumption ensures that the learned knowledge is consistent across the local models from all clients. Therefore, these local models can be properly aggregated as a global model without undermining the overall performance. Nevertheless, when the neighbor distribution patterns of nodes vary across different clients (e.g., when clients hold graphs with different levels of heterophily), their local models may gain different and even conflict knowledge from their node-level predictive tasks. Consequently, aggregating these local models usually leads to catastrophic performance deterioration on the global model. To address this challenge, we propose FedHERO, an FGL framework designed to harness and share insights from heterophilic graphs effectively. At the heart of FedHERO is a dual-channel GNN equipped with a structure learner, engineered to discern the structural knowledge encoded in the local graphs. With this specialized component, FedHERO enables the local model for each client to identify and learn patterns that are universally applicable across graphs with different patterns of node neighbor distributions. FedHERO not only enhances the performance of individual client models by leveraging both local and shared structural insights but also sets a new precedent in this field to effectively handle graph data with various node neighbor distribution patterns. We conduct extensive experiments to validate the superior performance of FedHERO against existing alternatives.
Abstract:The rapid advancements in large Language models (LLMs) have significantly enhanced their reasoning capabilities, driven by various strategies such as multi-agent collaboration. However, unlike the well-established performance improvements achieved through scaling data and model size, the scaling of reasoning in LLMs is more complex and can even negatively impact reasoning performance, introducing new challenges in model alignment and robustness. In this survey, we provide a comprehensive examination of scaling in LLM reasoning, categorizing it into multiple dimensions and analyzing how and to what extent different scaling strategies contribute to improving reasoning capabilities. We begin by exploring scaling in input size, which enables LLMs to process and utilize more extensive context for improved reasoning. Next, we analyze scaling in reasoning steps that improves multi-step inference and logical consistency. We then examine scaling in reasoning rounds, where iterative interactions refine reasoning outcomes. Furthermore, we discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement. Finally, we review applications of scaling across domains and outline future directions for further advancing LLM reasoning. By synthesizing these diverse perspectives, this survey aims to provide insights into how scaling strategies fundamentally enhance the reasoning capabilities of LLMs and further guide the development of next-generation AI systems.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for aligning artificial intelligence systems with human values, achieving remarkable success in fine-tuning large language models. However, existing RLHF frameworks often assume that human preferences are relatively homogeneous and can be captured by a single, unified reward model. This assumption overlooks the inherent diversity and heterogeneity across individuals, limiting the adaptability of RLHF to personalized scenarios and risking misalignments that can diminish user satisfaction and trust in AI systems. In this paper, we address these challenges by introducing Low-Rank Adaptation (LoRA) into the personalized RLHF framework. We apply LoRA in the the aggregated parameter space of all personalized reward functions, thereby enabling efficient learning of personalized reward models from potentially limited local datasets. Our approach exploits potential shared structures among the local ground-truth reward models while allowing for individual adaptation, without relying on restrictive assumptions about shared representations as in prior works. We further establish sample complexity guarantees for our method. Theoretical analysis demonstrates the effectiveness of the proposed approach in capturing both shared and individual-specific structures within heterogeneous human preferences, addressing the dual challenge of personalization requirements and practical data constraints. Experimental results on real-world datasets corroborate the efficiency of our algorithm in the personalized RLHF setting.
Abstract:Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts without model update. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high detection accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the DEcision Feedback INcontExt Detection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts as pseudo-labels to improve the detection for subsequent symbols. Furthermore, we proposed another detection method where we combine ICL with Semi-Supervised Learning (SSL) to extract information from both labeled and unlabeled data during inference, thus avoiding the errors propagated during the decision feedback process of the original DEFINED. Extensive experiments across a broad range of wireless communication settings demonstrate that a small Transformer trained with DEFINED or IC-SSL achieves significant performance improvements over conventional methods, in some cases only needing a single pilot pair to achieve similar performance of the latter with more than 4 pilot pairs.
Abstract:Pure exploration is one of the fundamental problems in multi-armed bandits (MAB). However, existing works mostly focus on specific pure exploration tasks, without a holistic view of the general pure exploration problem. This work fills this gap by introducing a versatile framework to study pure exploration, with a focus on identifying the pairwise relationships between targeted arm pairs. Moreover, unlike existing works that only optimize the stopping time (i.e., sample complexity), this work considers that arms are associated with potentially different costs and targets at optimizing the cumulative cost that occurred during learning. Under the general framework of pairwise pure exploration with arm-specific costs, a performance lower bound is derived. Then, a novel algorithm, termed CAET (Cost-Aware Pairwise Exploration Task), is proposed. CAET builds on the track-and-stop principle with a novel design to handle the arm-specific costs, which can potentially be zero and thus represent a very challenging case. Theoretical analyses prove that the performance of CAET approaches the lower bound asymptotically. Special cases are further discussed, including an extension to regret minimization, which is another major focus of MAB. The effectiveness and efficiency of CAET are also verified through experimental results under various settings.
Abstract:Diffusion models are powerful generative models that can produce highly realistic samples for various tasks. Typically, these models are constructed using centralized, independently and identically distributed (IID) training data. However, in practical scenarios, data is often distributed across multiple clients and frequently manifests non-IID characteristics. Federated Learning (FL) can leverage this distributed data to train diffusion models, but the performance of existing FL methods is unsatisfactory in non-IID scenarios. To address this, we propose FedDDPM-Federated Learning with Denoising Diffusion Probabilistic Models, which leverages the data generative capability of diffusion models to facilitate model training. In particular, the server uses well-trained local diffusion models uploaded by each client before FL training to generate auxiliary data that can approximately represent the global data distribution. Following each round of model aggregation, the server further optimizes the global model using the auxiliary dataset to alleviate the impact of heterogeneous data on model performance. We provide a rigorous convergence analysis of FedDDPM and propose an enhanced algorithm, FedDDPM+, to reduce training overheads. FedDDPM+ detects instances of slow model learning and performs a one-shot correction using the auxiliary dataset. Experimental results validate that our proposed algorithms outperform the state-of-the-art FL algorithms on the MNIST, CIFAR10 and CIFAR100 datasets.
Abstract:In this paper, we address a crucial but often overlooked issue in applying reinforcement learning (RL) to radio resource management (RRM) in wireless communications: the mismatch between the discounted reward RL formulation and the undiscounted goal of wireless network optimization. To the best of our knowledge, we are the first to systematically investigate this discrepancy, starting with a discussion of the problem formulation followed by simulations that quantify the extent of the gap. To bridge this gap, we introduce the use of average reward RL, a method that aligns more closely with the long-term objectives of RRM. We propose a new method called the Average Reward Off policy Soft Actor Critic (ARO SAC) is an adaptation of the well known Soft Actor Critic algorithm in the average reward framework. This new method achieves significant performance improvement our simulation results demonstrate a 15% gain in the system performance over the traditional discounted reward RL approach, underscoring the potential of average reward RL in enhancing the efficiency and effectiveness of wireless network optimization.