Abstract:Understanding humor-particularly when it involves complex, contradictory narratives that require comparative reasoning-remains a significant challenge for large vision-language models (VLMs). This limitation hinders AI's ability to engage in human-like reasoning and cultural expression. In this paper, we investigate this challenge through an in-depth analysis of comics that juxtapose panels to create humor through contradictions. We introduce the YesBut (V2), a novel benchmark with 1,262 comic images from diverse multilingual and multicultural contexts, featuring comprehensive annotations that capture various aspects of narrative understanding. Using this benchmark, we systematically evaluate a wide range of VLMs through four complementary tasks spanning from surface content comprehension to deep narrative reasoning, with particular emphasis on comparative reasoning between contradictory elements. Our extensive experiments reveal that even the most advanced models significantly underperform compared to humans, with common failures in visual perception, key element identification, comparative analysis and hallucinations. We further investigate text-based training strategies and social knowledge augmentation methods to enhance model performance. Our findings not only highlight critical weaknesses in VLMs' understanding of cultural and creative expressions but also provide pathways toward developing context-aware models capable of deeper narrative understanding though comparative reasoning.
Abstract:Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once the reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This approach not only eliminates Gaussian-object misalignment issues in dynamic scenes but also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments on various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
Abstract:Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
Abstract:True intelligence hinges on the ability to uncover and leverage hidden causal relations. Despite significant progress in AI and computer vision (CV), there remains a lack of benchmarks for assessing models' abilities to infer latent causality from complex visual data. In this paper, we introduce \textsc{\textbf{Causal3D}}, a novel and comprehensive benchmark that integrates structured data (tables) with corresponding visual representations (images) to evaluate causal reasoning. Designed within a systematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse causal relations, views, and backgrounds, enabling evaluations across scenes of varying complexity. We assess multiple state-of-the-art methods, including classical causal discovery, causal representation learning, and large/vision-language models (LLMs/VLMs). Our experiments show that as causal structures grow more complex without prior knowledge, performance declines significantly, highlighting the challenges even advanced methods face in complex causal scenarios. Causal3D serves as a vital resource for advancing causal reasoning in CV and fostering trustworthy AI in critical domains.
Abstract:Large Language Models (LLMs) have significantly advanced the fact-checking studies. However, existing automated fact-checking evaluation methods rely on static datasets and classification metrics, which fail to automatically evaluate the justification production and uncover the nuanced limitations of LLMs in fact-checking. In this work, we introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities. Leveraging importance sampling principles and multi-agent collaboration, FACT-AUDIT generates adaptive and scalable datasets, performs iterative model-centric evaluations, and updates assessments based on model-specific responses. By incorporating justification production alongside verdict prediction, this framework provides a comprehensive and evolving audit of LLMs' factual reasoning capabilities, to investigate their trustworthiness. Extensive experiments demonstrate that FACT-AUDIT effectively differentiates among state-of-the-art LLMs, providing valuable insights into model strengths and limitations in model-centric fact-checking analysis.
Abstract:Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored, particularly for integrating structured time series data with unstructured clinical notes. In clinical practice, dynamic time series data such as lab test results capture critical temporal patterns, while clinical notes provide rich semantic context. Merging these modalities is challenging due to the inherent differences between continuous signals and discrete text. To bridge this gap, we introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify these heterogeneous data types. Our approach leverages lightweight anomaly detection to generate anomaly captions that serve as prompts, guiding the encoding of raw time series data into informative embeddings. These embeddings are aligned with textual representations in a shared latent space, preserving fine-grained temporal nuances alongside semantic insights. Furthermore, our framework incorporates tailored self-supervised objectives to enhance both intra- and inter-modal alignment. We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
Abstract:The ability of large language models (LLMs) to follow instructions is crucial for their practical applications, yet the underlying mechanisms remain poorly understood. This paper presents a novel framework that leverages sparse autoencoders (SAE) to interpret how instruction following works in these models. We demonstrate how the features we identify can effectively steer model outputs to align with given instructions. Through analysis of SAE latent activations, we identify specific latents responsible for instruction following behavior. Our findings reveal that instruction following capabilities are encoded by a distinct set of instruction-relevant SAE latents. These latents both show semantic proximity to relevant instructions and demonstrate causal effects on model behavior. Our research highlights several crucial factors for achieving effective steering performance: precise feature identification, the role of final layer, and optimal instruction positioning. Additionally, we demonstrate that our methodology scales effectively across SAEs and LLMs of varying sizes.
Abstract:The proliferation of misinformation, such as rumors on social media, has drawn significant attention, prompting various expressions of stance among users. Although rumor detection and stance detection are distinct tasks, they can complement each other. Rumors can be identified by cross-referencing stances in related posts, and stances are influenced by the nature of the rumor. However, existing stance detection methods often require post-level stance annotations, which are costly to obtain. We propose a novel LLM-enhanced MIL approach to jointly predict post stance and claim class labels, supervised solely by claim labels, using an undirected microblog propagation model. Our weakly supervised approach relies only on bag-level labels of claim veracity, aligning with multi-instance learning (MIL) principles. To achieve this, we transform the multi-class problem into multiple MIL-based binary classification problems. We then employ a discriminative attention layer to aggregate the outputs from these classifiers into finer-grained classes. Experiments conducted on three rumor datasets and two stance datasets demonstrate the effectiveness of our approach, highlighting strong connections between rumor veracity and expressed stances in responding posts. Our method shows promising performance in joint rumor and stance detection compared to the state-of-the-art methods.
Abstract:The growing importance of textual and relational systems has driven interest in enhancing large language models (LLMs) for graph-structured data, particularly Text-Attributed Graphs (TAGs), where samples are represented by textual descriptions interconnected by edges. While research has largely focused on developing specialized graph LLMs through task-specific instruction tuning, a comprehensive benchmark for evaluating LLMs solely through prompt design remains surprisingly absent. Without such a carefully crafted evaluation benchmark, most if not all, tailored graph LLMs are compared against general LLMs using simplistic queries (e.g., zero-shot reasoning with LLaMA), which can potentially camouflage many advantages as well as unexpected predicaments of them. To achieve more general evaluations and unveil the true potential of LLMs for graph tasks, we introduce Graph In-context Learning (GraphICL) Benchmark, a comprehensive benchmark comprising novel prompt templates designed to capture graph structure and handle limited label knowledge. Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models in resource-constrained settings and out-of-domain tasks. These findings highlight the significant potential of prompt engineering to enhance LLM performance on graph learning tasks without training and offer a strong baseline for advancing research in graph LLMs.
Abstract:Supervised fine-tuning has become the predominant method for adapting large pretrained models to downstream tasks. However, recent studies have revealed that these models are vulnerable to backdoor attacks, where even a small number of malicious samples can successfully embed backdoor triggers into the model. While most existing defense methods focus on post-training backdoor defense, efficiently defending against backdoor attacks during training phase remains largely unexplored. To address this gap, we propose a novel defense method called Backdoor Token Unlearning (BTU), which proactively detects and neutralizes trigger tokens during the training stage. Our work is based on two key findings: 1) backdoor learning causes distinctive differences between backdoor token parameters and clean token parameters in word embedding layers, and 2) the success of backdoor attacks heavily depends on backdoor token parameters. The BTU defense leverages these properties to identify aberrant embedding parameters and subsequently removes backdoor behaviors using a fine-grained unlearning technique. Extensive evaluations across three datasets and four types of backdoor attacks demonstrate that BTU effectively defends against these threats while preserving the model's performance on primary tasks. Our code is available at https://github.com/XDJPH/BTU.