Abstract:Industrial recommender systems increasingly adopt multi-scenario learning (MSL) and multi-task learning (MTL) to handle diverse user interactions and contexts, but existing approaches suffer from two critical drawbacks: (1) underutilization of large-scale model parameters due to limited interaction with complex feature modules, and (2) difficulty in jointly modeling scenario and task information in a unified framework. To address these challenges, we propose a unified \textbf{M}ulti-\textbf{D}istribution \textbf{L}earning (MDL) framework, inspired by the "prompting" paradigm in large language models (LLMs). MDL treats scenario and task information as specialized tokens rather than auxiliary inputs or gating signals. Specifically, we introduce a unified information tokenization module that transforms features, scenarios, and tasks into a unified tokenized format. To facilitate deep interaction, we design three synergistic mechanisms: (1) feature token self-attention for rich feature interactions, (2) domain-feature attention for scenario/task-adaptive feature activation, and (3) domain-fused aggregation for joint distribution prediction. By stacking these interactions, MDL enables scenario and task information to "prompt" and activate the model's vast parameter space in a bottom-up, layer-wise manner. Extensive experiments on real-world industrial datasets demonstrate that MDL significantly outperforms state-of-the-art MSL and MTL baselines. Online A/B testing on Douyin Search platform over one month yields +0.0626\% improvement in LT30 and -0.3267\% reduction in change query rate. MDL has been fully deployed in production, serving hundreds of millions of users daily.
Abstract:In recent years, the study of scaling laws for large recommendation models has gradually gained attention. Works such as Wukong, HiFormer, and DHEN have attempted to increase the complexity of interaction structures in ranking models and validate scaling laws between performance and parameters/FLOPs by stacking multiple layers. However, their experimental scale remains relatively limited. Our previous work introduced the TokenMixer architecture, an efficient variant of the standard Transformer where the self-attention mechanism is replaced by a simple reshape operation, and the feed-forward network is adapted to a pertoken FFN. The effectiveness of this architecture was demonstrated in the ranking stage by the model presented in the RankMixer paper. However, this foundational TokenMixer architecture itself has several design limitations. In this paper, we propose TokenMixer-Large, which systematically addresses these core issues: sub-optimal residual design, insufficient gradient updates in deep models, incomplete MoE sparsification, and limited exploration of scalability. By leveraging a mixing-and-reverting operation, inter-layer residuals, the auxiliary loss and a novel Sparse-Pertoken MoE architecture, TokenMixer-Large successfully scales its parameters to 7-billion and 15-billion on online traffic and offline experiments, respectively. Currently deployed in multiple scenarios at ByteDance, TokenMixer -Large has achieved significant offline and online performance gains.
Abstract:Open-set biometrics faces challenges with probe subjects who may not be enrolled in the gallery, as traditional biometric systems struggle to detect these non-mated probes. Despite the growing prevalence of multi-sample galleries in real-world deployments, most existing methods collapse intra-subject variability into a single global representation, leading to suboptimal decision boundaries and poor open-set robustness. To address this issue, we propose LocalScore, a simple yet effective scoring algorithm that explicitly incorporates the local density of the gallery feature distribution using the k-th nearest neighbors. LocalScore is architecture-agnostic, loss-independent, and incurs negligible computational overhead, making it a plug-and-play solution for existing biometric systems. Extensive experiments across multiple modalities demonstrate that LocalScore consistently achieves substantial gains in open-set retrieval (FNIR@FPIR reduced from 53% to 40%) and verification (TAR@FAR improved from 51% to 74%). We further provide theoretical analysis and empirical validation explaining when and why the method achieves the most significant gains based on dataset characteristics.
Abstract:Multi-modal large language models (MLLMs) exhibit strong general-purpose capabilities, yet still struggle on Fine-Grained Visual Classification (FGVC), a core perception task that requires subtle visual discrimination and is crucial for many real-world applications. A widely adopted strategy for boosting performance on challenging tasks such as math and coding is Chain-of-Thought (CoT) reasoning. However, several prior works have reported that CoT can actually harm performance on visual perception tasks. These studies, though, examine the issue from relatively narrow angles and leave open why CoT degrades perception-heavy performance. We systematically re-examine the role of CoT in FGVC through the lenses of zero-shot evaluation and multiple training paradigms. Across these settings, we uncover a central paradox: the degradation induced by CoT is largely driven by the reasoning length, in which longer textual reasoning consistently lowers classification accuracy. We term this phenomenon the ``Cost of Thinking''. Building on this finding, we make two key contributions: (1) \alg, a simple and general plug-and-play normalization method for multi-reward optimization that balances heterogeneous reward signals, and (2) ReFine-RFT, a framework that combines ensemble rewards with \alg to constrain reasoning length while providing dense accuracy-oriented feedback. Extensive experiments demonstrate the effectiveness of our findings and the proposed ReFine-RFT, achieving state-of-the-art performance across FGVC benchmarks. Code and models are available at \href{https://github.com/jiezhu23/ReFine-RFT}{Project Link}.
Abstract:The rapid advancement of AI-generated content (AIGC) has escalated the threat of deepfakes, from facial manipulations to the synthesis of entire photorealistic human bodies. However, existing detection methods remain fragmented, specializing either in facial-region forgeries or full-body synthetic images, and consequently fail to generalize across the full spectrum of human image manipulations. We introduce HuForDet, a holistic framework for human image forgery detection, which features a dual-branch architecture comprising: (1) a face forgery detection branch that employs heterogeneous experts operating in both RGB and frequency domains, including an adaptive Laplacian-of-Gaussian (LoG) module designed to capture artifacts ranging from fine-grained blending boundaries to coarse-scale texture irregularities; and (2) a contextualized forgery detection branch that leverages a Multi-Modal Large Language Model (MLLM) to analyze full-body semantic consistency, enhanced with a confidence estimation mechanism that dynamically weights its contribution during feature fusion. We curate a human image forgery (HuFor) dataset that unifies existing face forgery data with a new corpus of full-body synthetic humans. Extensive experiments show that our HuForDet achieves state-of-the-art forgery detection performance and superior robustness across diverse human image forgeries.
Abstract:Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
Abstract:Integrating image generation and understanding into a single framework has become a pivotal goal in the multimodal domain. However, how understanding can effectively assist generation has not been fully explored. Unlike previous works that focus on leveraging reasoning abilities and world knowledge from understanding models, this paper introduces a novel perspective: leveraging understanding to enhance the fidelity and detail richness of generated images. To this end, we propose Forge-and-Quench, a new unified framework that puts this principle into practice. In the generation process of our framework, an MLLM first reasons over the entire conversational context, including text instructions, to produce an enhanced text instruction. This refined instruction is then mapped to a virtual visual representation, termed the Bridge Feature, via a novel Bridge Adapter. This feature acts as a crucial link, forging insights from the understanding model to quench and refine the generation process. It is subsequently injected into the T2I backbone as a visual guidance signal, alongside the enhanced text instruction that replaces the original input. To validate this paradigm, we conduct comprehensive studies on the design of the Bridge Feature and Bridge Adapter. Our framework demonstrates exceptional extensibility and flexibility, enabling efficient migration across different MLLM and T2I models with significant savings in training overhead, all without compromising the MLLM's inherent multimodal understanding capabilities. Experiments show that Forge-and-Quench significantly improves image fidelity and detail across multiple models, while also maintaining instruction-following accuracy and enhancing world knowledge application. Models and codes are available at https://github.com/YanbingZeng/Forge-and-Quench.
Abstract:Process Reward Models (PRMs) have emerged as a promising framework for supervising intermediate reasoning in large language models (LLMs), yet existing PRMs are primarily trained on general or Science, Technology, Engineering, and Mathematics (STEM) domains and fall short in domain-specific contexts such as finance, where reasoning is more structured, symbolic, and sensitive to factual and regulatory correctness. We introduce \textbf{Fin-PRM}, a domain-specialized, trajectory-aware PRM tailored to evaluate intermediate reasoning steps in financial tasks. Fin-PRM integrates step-level and trajectory-level reward supervision, enabling fine-grained evaluation of reasoning traces aligned with financial logic. We apply Fin-PRM in both offline and online reward learning settings, supporting three key applications: (i) selecting high-quality reasoning trajectories for distillation-based supervised fine-tuning, (ii) providing dense process-level rewards for reinforcement learning, and (iii) guiding reward-informed Best-of-N inference at test time. Experimental results on financial reasoning benchmarks, including CFLUE and FinQA, demonstrate that Fin-PRM consistently outperforms general-purpose PRMs and strong domain baselines in trajectory selection quality. Downstream models trained with Fin-PRM yield substantial improvements with baselines, with gains of 12.9\% in supervised learning, 5.2\% in reinforcement learning, and 5.1\% in test-time performance. These findings highlight the value of domain-specialized reward modeling for aligning LLMs with expert-level financial reasoning. Our project resources will be available at https://github.com/aliyun/qwen-dianjin.
Abstract:Whole-body biometric recognition is a challenging multimodal task that integrates various biometric modalities, including face, gait, and body. This integration is essential for overcoming the limitations of unimodal systems. Traditionally, whole-body recognition involves deploying different models to process multiple modalities, achieving the final outcome by score-fusion (e.g., weighted averaging of similarity matrices from each model). However, these conventional methods may overlook the variations in score distributions of individual modalities, making it challenging to improve final performance. In this work, we present \textbf{Q}uality-guided \textbf{M}ixture of score-fusion \textbf{E}xperts (QME), a novel framework designed for improving whole-body biometric recognition performance through a learnable score-fusion strategy using a Mixture of Experts (MoE). We introduce a novel pseudo-quality loss for quality estimation with a modality-specific Quality Estimator (QE), and a score triplet loss to improve the metric performance. Extensive experiments on multiple whole-body biometric datasets demonstrate the effectiveness of our proposed approach, achieving state-of-the-art results across various metrics compared to baseline methods. Our method is effective for multimodal and multi-model, addressing key challenges such as model misalignment in the similarity score domain and variability in data quality.
Abstract:Text-to-image diffusion model since its propose has significantly influenced the content creation due to its impressive generation capability. However, this capability depends on large-scale text-image datasets gathered from web platforms like social media, posing substantial challenges in copyright compliance and personal privacy leakage. Though there are some efforts devoted to explore approaches for auditing data provenance in text-to-image diffusion models, existing work has unrealistic assumptions that can obtain model internal knowledge, e.g., intermediate results, or the evaluation is not reliable. To fill this gap, we propose a completely black-box auditing framework called Feature Semantic Consistency-based Auditing (FSCA). It utilizes two types of semantic connections within the text-to-image diffusion model for auditing, eliminating the need for access to internal knowledge. To demonstrate the effectiveness of our FSCA framework, we perform extensive experiments on LAION-mi dataset and COCO dataset, and compare with eight state-of-the-art baseline approaches. The results show that FSCA surpasses previous baseline approaches across various metrics and different data distributions, showcasing the superiority of our FSCA. Moreover, we introduce a recall balance strategy and a threshold adjustment strategy, which collectively allows FSCA to reach up a user-level accuracy of 90% in a real-world auditing scenario with only 10 samples/user, highlighting its strong auditing potential in real-world applications. Our code is made available at https://github.com/JiePKU/FSCA.