Abstract:Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
Abstract:Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and lengthscales accessible with such computationally expensive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select to compare the performance of different models. We introduce CGnets, a deep learning approach, that learn coarse-grained free energy functions and can be trained by the force matching scheme. CGnets maintain all physically relevant invariances and allow to incorporate prior physics knowledge to avoid sampling of unphysical structures. We demonstrate that CGnets outperform the results of classical coarse-graining methods, as they are able to capture the multi-body terms that emerge from the dimensionality reduction.
Abstract:The labeling cost of large number of bounding boxes is one of the main challenges for training modern object detectors. To reduce the dependence on expensive bounding box annotations, we propose a new semi-supervised object detection formulation, in which a few seed box level annotations and a large scale of image level annotations are used to train the detector. We adopt a training-mining framework, which is widely used in weakly supervised object detection tasks. However, the mining process inherently introduces various kinds of labelling noises: false negatives, false positives and inaccurate boundaries, which can be harmful for training the standard object detectors (e.g. Faster RCNN). We propose a novel NOise Tolerant Ensemble RCNN (NOTE-RCNN) object detector to handle such noisy labels. Comparing to standard Faster RCNN, it contains three highlights: an ensemble of two classification heads and a distillation head to avoid overfitting on noisy labels and improve the mining precision, masking the negative sample loss in box predictor to avoid the harm of false negative labels, and training box regression head only on seed annotations to eliminate the harm from inaccurate boundaries of mined bounding boxes. We evaluate the methods on ILSVRC 2013 and MSCOCO 2017 dataset; we observe that the detection accuracy consistently improves as we iterate between mining and training steps, and state-of-the-art performance is achieved.
Abstract:We relate the minimax game of generative adversarial networks (GANs) to finding the saddle points of the Lagrangian function for a convex optimization problem, where the discriminator outputs and the distribution of generator outputs play the roles of primal variables and dual variables, respectively. This formulation shows the connection between the standard GAN training process and the primal-dual subgradient methods for convex optimization. The inherent connection does not only provide a theoretical convergence proof for training GANs in the function space, but also inspires a novel objective function for training. The modified objective function forces the distribution of generator outputs to be updated along the direction according to the primal-dual subgradient methods. A toy example shows that the proposed method is able to resolve mode collapse, which in this case cannot be avoided by the standard GAN or Wasserstein GAN. Experiments on both Gaussian mixture synthetic data and real-world image datasets demonstrate the performance of the proposed method on generating diverse samples.
Abstract:Fine-grained recognition is challenging due to its subtle local inter-class differences versus large intra-class variations such as poses. A key to address this problem is to localize discriminative parts to extract pose-invariant features. However, ground-truth part annotations can be expensive to acquire. Moreover, it is hard to define parts for many fine-grained classes. This work introduces Fully Convolutional Attention Networks (FCANs), a reinforcement learning framework to optimally glimpse local discriminative regions adaptive to different fine-grained domains. Compared to previous methods, our approach enjoys three advantages: 1) the weakly-supervised reinforcement learning procedure requires no expensive part annotations; 2) the fully-convolutional architecture speeds up both training and testing; 3) the greedy reward strategy accelerates the convergence of the learning. We demonstrate the effectiveness of our method with extensive experiments on four challenging fine-grained benchmark datasets, including CUB-200-2011, Stanford Dogs, Stanford Cars and Food-101.
Abstract:Incorporating multi-scale features in fully convolutional neural networks (FCNs) has been a key element to achieving state-of-the-art performance on semantic image segmentation. One common way to extract multi-scale features is to feed multiple resized input images to a shared deep network and then merge the resulting features for pixelwise classification. In this work, we propose an attention mechanism that learns to softly weight the multi-scale features at each pixel location. We adapt a state-of-the-art semantic image segmentation model, which we jointly train with multi-scale input images and the attention model. The proposed attention model not only outperforms average- and max-pooling, but allows us to diagnostically visualize the importance of features at different positions and scales. Moreover, we show that adding extra supervision to the output at each scale is essential to achieving excellent performance when merging multi-scale features. We demonstrate the effectiveness of our model with extensive experiments on three challenging datasets, including PASCAL-Person-Part, PASCAL VOC 2012 and a subset of MS-COCO 2014.
Abstract:A key challenge in fine-grained recognition is how to find and represent discriminative local regions. Recent attention models are capable of learning discriminative region localizers only from category labels with reinforcement learning. However, not utilizing any explicit part information, they are not able to accurately find multiple distinctive regions. In this work, we introduce an attribute-guided attention localization scheme where the local region localizers are learned under the guidance of part attribute descriptions. By designing a novel reward strategy, we are able to learn to locate regions that are spatially and semantically distinctive with reinforcement learning algorithm. The attribute labeling requirement of the scheme is more amenable than the accurate part location annotation required by traditional part-based fine-grained recognition methods. Experimental results on the CUB-200-2011 dataset demonstrate the superiority of the proposed scheme on both fine-grained recognition and attribute recognition.
Abstract:While deep convolutional neural networks (CNNs) have shown a great success in single-label image classification, it is important to note that real world images generally contain multiple labels, which could correspond to different objects, scenes, actions and attributes in an image. Traditional approaches to multi-label image classification learn independent classifiers for each category and employ ranking or thresholding on the classification results. These techniques, although working well, fail to explicitly exploit the label dependencies in an image. In this paper, we utilize recurrent neural networks (RNNs) to address this problem. Combined with CNNs, the proposed CNN-RNN framework learns a joint image-label embedding to characterize the semantic label dependency as well as the image-label relevance, and it can be trained end-to-end from scratch to integrate both information in a unified framework. Experimental results on public benchmark datasets demonstrate that the proposed architecture achieves better performance than the state-of-the-art multi-label classification model
Abstract:We present an approach that exploits hierarchical Recurrent Neural Networks (RNNs) to tackle the video captioning problem, i.e., generating one or multiple sentences to describe a realistic video. Our hierarchical framework contains a sentence generator and a paragraph generator. The sentence generator produces one simple short sentence that describes a specific short video interval. It exploits both temporal- and spatial-attention mechanisms to selectively focus on visual elements during generation. The paragraph generator captures the inter-sentence dependency by taking as input the sentential embedding produced by the sentence generator, combining it with the paragraph history, and outputting the new initial state for the sentence generator. We evaluate our approach on two large-scale benchmark datasets: YouTubeClips and TACoS-MultiLevel. The experiments demonstrate that our approach significantly outperforms the current state-of-the-art methods with BLEU@4 scores 0.499 and 0.305 respectively.
Abstract:We propose a novel attention based deep learning architecture for visual question answering task (VQA). Given an image and an image related natural language question, VQA generates the natural language answer for the question. Generating the correct answers requires the model's attention to focus on the regions corresponding to the question, because different questions inquire about the attributes of different image regions. We introduce an attention based configurable convolutional neural network (ABC-CNN) to learn such question-guided attention. ABC-CNN determines an attention map for an image-question pair by convolving the image feature map with configurable convolutional kernels derived from the question's semantics. We evaluate the ABC-CNN architecture on three benchmark VQA datasets: Toronto COCO-QA, DAQUAR, and VQA dataset. ABC-CNN model achieves significant improvements over state-of-the-art methods on these datasets. The question-guided attention generated by ABC-CNN is also shown to reflect the regions that are highly relevant to the questions.