Alert button
Picture for Quoc V. Le

Quoc V. Le

Alert button

Large Language Models as Optimizers

Sep 07, 2023
Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen

Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to prompt optimization where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.

Viaarxiv icon

Simple synthetic data reduces sycophancy in large language models

Aug 07, 2023
Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, Quoc V. Le

Sycophancy is an undesirable behavior where models tailor their responses to follow a human user's view even when that view is not objectively correct (e.g., adapting liberal views once a user reveals that they are liberal). In this paper, we study the prevalence of sycophancy in language models and propose a simple synthetic-data intervention to reduce this behavior. First, on a set of three sycophancy tasks (Perez et al., 2022) where models are asked for an opinion on statements with no correct answers (e.g., politics), we observe that both model scaling and instruction tuning significantly increase sycophancy for PaLM models up to 540B parameters. Second, we extend sycophancy evaluations to simple addition statements that are objectively incorrect, finding that despite knowing that these statements are wrong, language models will still agree with them if the user does as well. To reduce sycophancy, we present a straightforward synthetic-data intervention that takes public NLP tasks and encourages models to be robust to user opinions on these tasks. Adding these data in a lightweight finetuning step can significantly reduce sycophantic behavior on held-out prompts. Code for generating synthetic data for intervention can be found at https://github.com/google/sycophancy-intervention.

Viaarxiv icon

FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search

Aug 07, 2023
Jordan Dotzel, Gang Wu, Andrew Li, Muhammad Umar, Yun Ni, Mohamed S. Abdelfattah, Zhiru Zhang, Liqun Cheng, Martin G. Dixon, Norman P. Jouppi, Quoc V. Le, Sheng Li

Figure 1 for FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Figure 2 for FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Figure 3 for FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Figure 4 for FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search

Quantization has become a mainstream compression technique for reducing model size, computational requirements, and energy consumption for modern deep neural networks (DNNs). With the improved numerical support in recent hardware, including multiple variants of integer and floating point, mixed-precision quantization has become necessary to achieve high-quality results with low model cost. Prior mixed-precision quantization methods have performed a post-training quantization search, which compromises on accuracy, or a differentiable quantization search, which leads to high memory usage from branching. Therefore, we propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models. We evaluate our floating-point and integer quantization search (FLIQS) on multiple convolutional networks and vision transformer models to discover Pareto-optimal models. Our approach discovers models that improve upon uniform precision, manual mixed-precision, and recent integer quantization search methods. With the proposed integer quantization search, we increase the accuracy of ResNet-18 on ImageNet by 1.31% points and ResNet-50 by 0.90% points with equivalent model cost over previous methods. Additionally, for the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% points compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to simultaneously search a joint quantization and neural architecture space and improve the ImageNet accuracy by 2.69% points with similar model cost on a MobileNetV2 search space.

Viaarxiv icon

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

May 24, 2023
Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le, Tengyu Ma, Adams Wei Yu

Figure 1 for DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
Figure 2 for DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
Figure 3 for DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
Figure 4 for DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

The mixture proportions of pretraining data domains (e.g., Wikipedia, books, web text) greatly affect language model (LM) performance. In this paper, we propose Domain Reweighting with Minimax Optimization (DoReMi), which first trains a small proxy model using group distributionally robust optimization (Group DRO) over domains to produce domain weights (mixture proportions) without knowledge of downstream tasks. We then resample a dataset with these domain weights and train a larger, full-sized model. In our experiments, we use DoReMi on a 280M-parameter proxy model to find domain weights for training an 8B-parameter model (30x larger) more efficiently. On The Pile, DoReMi improves perplexity across all domains, even when it downweights a domain. DoReMi improves average few-shot downstream accuracy by 6.5% points over a baseline model trained using The Pile's default domain weights and reaches the baseline accuracy with 2.6x fewer training steps. On the GLaM dataset, DoReMi, which has no knowledge of downstream tasks, even matches the performance of using domain weights tuned on downstream tasks.

Viaarxiv icon

Symbol tuning improves in-context learning in language models

May 15, 2023
Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le

Figure 1 for Symbol tuning improves in-context learning in language models
Figure 2 for Symbol tuning improves in-context learning in language models
Figure 3 for Symbol tuning improves in-context learning in language models
Figure 4 for Symbol tuning improves in-context learning in language models

We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., "positive/negative sentiment") are replaced with arbitrary symbols (e.g., "foo/bar"). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across Flan-PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior semantic knowledge.

Viaarxiv icon

Symbolic Discovery of Optimization Algorithms

Feb 17, 2023
Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le

Figure 1 for Symbolic Discovery of Optimization Algorithms
Figure 2 for Symbolic Discovery of Optimization Algorithms
Figure 3 for Symbolic Discovery of Optimization Algorithms
Figure 4 for Symbolic Discovery of Optimization Algorithms

We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, $\textbf{Lion}$ ($\textit{Evo$\textbf{L}$ved S$\textbf{i}$gn M$\textbf{o}$me$\textbf{n}$tum}$). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% $\textit{zero-shot}$ and 91.1% $\textit{fine-tuning}$ accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. The implementation of Lion is publicly available.

* 29 pages, we clarified the recommended learning rate and added some references 
Viaarxiv icon

The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

Feb 14, 2023
Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, Adam Roberts

Figure 1 for The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
Figure 2 for The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
Figure 3 for The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
Figure 4 for The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

We study the design decisions of publicly available instruction tuning methods, and break down the development of Flan 2022 (Chung et al., 2022). Through careful ablation studies on the Flan Collection of tasks and methods, we tease apart the effect of design decisions which enable Flan-T5 to outperform prior work by 3-17%+ across evaluation settings. We find task balancing and enrichment techniques are overlooked but critical to effective instruction tuning, and in particular, training with mixed prompt settings (zero-shot, few-shot, and chain-of-thought) actually yields stronger (2%+) performance in all settings. In further experiments, we show Flan-T5 requires less finetuning to converge higher and faster than T5 on single downstream tasks, motivating instruction-tuned models as more computationally-efficient starting checkpoints for new tasks. Finally, to accelerate research on instruction tuning, we make the Flan 2022 collection of datasets, templates, and methods publicly available at https://github.com/google-research/FLAN/tree/main/flan/v2.

Viaarxiv icon

Unified Functional Hashing in Automatic Machine Learning

Feb 10, 2023
Ryan Gillard, Stephen Jonany, Yingjie Miao, Michael Munn, Connal de Souza, Jonathan Dungay, Chen Liang, David R. So, Quoc V. Le, Esteban Real

Figure 1 for Unified Functional Hashing in Automatic Machine Learning
Figure 2 for Unified Functional Hashing in Automatic Machine Learning
Figure 3 for Unified Functional Hashing in Automatic Machine Learning
Figure 4 for Unified Functional Hashing in Automatic Machine Learning

The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.

Viaarxiv icon

Noise2Music: Text-conditioned Music Generation with Diffusion Models

Feb 08, 2023
Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan, Wei Han

Figure 1 for Noise2Music: Text-conditioned Music Generation with Diffusion Models
Figure 2 for Noise2Music: Text-conditioned Music Generation with Diffusion Models
Figure 3 for Noise2Music: Text-conditioned Music Generation with Diffusion Models
Figure 4 for Noise2Music: Text-conditioned Music Generation with Diffusion Models

We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music

* 15 pages 
Viaarxiv icon

PyGlove: Efficiently Exchanging ML Ideas as Code

Feb 03, 2023
Daiyi Peng, Xuanyi Dong, Esteban Real, Yifeng Lu, Quoc V. Le

Figure 1 for PyGlove: Efficiently Exchanging ML Ideas as Code
Figure 2 for PyGlove: Efficiently Exchanging ML Ideas as Code
Figure 3 for PyGlove: Efficiently Exchanging ML Ideas as Code
Figure 4 for PyGlove: Efficiently Exchanging ML Ideas as Code

The increasing complexity and scale of machine learning (ML) has led to the need for more efficient collaboration among multiple teams. For example, when a research team invents a new architecture like "ResNet," it is desirable for multiple engineering teams to adopt it. However, the effort required for each team to study and understand the invention does not scale well with the number of teams or inventions. In this paper, we present an extension of our PyGlove library to easily and scalably share ML ideas. PyGlove represents ideas as symbolic rule-based patches, enabling researchers to write down the rules for models they have not seen. For example, an inventor can write rules that will "add skip-connections." This permits a network effect among teams: at once, any team can issue patches to all other teams. Such a network effect allows users to quickly surmount the cost of adopting PyGlove by writing less code quicker, providing a benefit that scales with time. We describe the new paradigm of organizing ML through symbolic patches and compare it to existing approaches. We also perform a case study of a large codebase where PyGlove led to an 80% reduction in the number of lines of code.

* 8 pages, 10 figures, 1 table 
Viaarxiv icon