Abstract:We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.
Abstract:Creating a unified speech and music model requires expensive pre-training. Model merging can instead create an unified audio model with minimal computational expense. However, direct merging is challenging when the models are not aligned in the weight space. Motivated by Git Re-Basin, we introduce a correlation-permutation approach that aligns a music encoder's internal layers with a speech encoder. We extend previous work to the case of merging transformer layers. The method computes a permutation matrix that maximizes the model's features-wise cross-correlations layer by layer, enabling effective fusion of these otherwise disjoint models. The merged model retains speech capabilities through this method while significantly enhancing music performance, achieving an improvement of 14.83 points in average score compared to linear interpolation model merging. This work allows the creation of unified audio models from independently trained encoders.
Abstract:Real-world audio often mixes speech and music, yet models typically handle only one domain. This paper introduces a multi-teacher distillation framework that unifies speech and music models into a single one while significantly reducing model size. Our approach leverages the strengths of domain-specific teacher models, such as HuBERT for speech and MERT for music, and explores various strategies to balance both domains. Experiments across diverse tasks demonstrate that our model matches the performance of domain-specific models, showing the effectiveness of cross-domain distillation. Additionally, we conduct few-shot learning experiments, highlighting the need for general models in real-world scenarios where labeled data is limited. Our results show that our model not only performs on par with specialized models but also outperforms them in few-shot scenarios, proving that a cross-domain approach is essential and effective for diverse tasks with limited data.
Abstract:Bias in speech emotion recognition (SER) systems often stems from spurious correlations between speaker characteristics and emotional labels, leading to unfair predictions across demographic groups. Many existing debiasing methods require model-specific changes or demographic annotations, limiting their practical use. We present CO-VADA, a Confidence-Oriented Voice Augmentation Debiasing Approach that mitigates bias without modifying model architecture or relying on demographic information. CO-VADA identifies training samples that reflect bias patterns present in the training data and then applies voice conversion to alter irrelevant attributes and generate samples. These augmented samples introduce speaker variations that differ from dominant patterns in the data, guiding the model to focus more on emotion-relevant features. Our framework is compatible with various SER models and voice conversion tools, making it a scalable and practical solution for improving fairness in SER systems.
Abstract:Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.
Abstract:Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts. While existing surveys provide comprehensive overviews of MAS infrastructures, they largely overlook the dimension of \emph{creativity}, including how novel outputs are generated and evaluated, how creativity informs agent personas, and how creative workflows are coordinated. This is the first survey dedicated to creativity in MAS. We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks. This survey offers a structured framework and roadmap for advancing the development, evaluation, and standardization of creative MAS.
Abstract:This paper introduces Meta-PerSER, a novel meta-learning framework that personalizes Speech Emotion Recognition (SER) by adapting to each listener's unique way of interpreting emotion. Conventional SER systems rely on aggregated annotations, which often overlook individual subtleties and lead to inconsistent predictions. In contrast, Meta-PerSER leverages a Model-Agnostic Meta-Learning (MAML) approach enhanced with Combined-Set Meta-Training, Derivative Annealing, and per-layer per-step learning rates, enabling rapid adaptation with only a few labeled examples. By integrating robust representations from pre-trained self-supervised models, our framework first captures general emotional cues and then fine-tunes itself to personal annotation styles. Experiments on the IEMOCAP corpus demonstrate that Meta-PerSER significantly outperforms baseline methods in both seen and unseen data scenarios, highlighting its promise for personalized emotion recognition.
Abstract:Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Abstract:While subgroup disparities and performance bias are increasingly studied in computational research, fairness in categorical Speech Emotion Recognition (SER) remains underexplored. Existing methods often rely on explicit demographic labels, which are difficult to obtain due to privacy concerns. To address this limitation, we introduce an Implicit Demography Inference (IDI) module that leverages pseudo-labeling from a pre-trained model and unsupervised learning using k-means clustering to mitigate bias in SER. Our experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 33% with less than a 3% decrease in SER accuracy. Also, the unsupervised IDI yields more than a 26% improvement in fairness metrics with a drop of less than 4% in SER performance. Further analyses reveal that the unsupervised IDI consistently mitigates race and age disparities, demonstrating its potential in scenarios where explicit demographic information is unavailable.
Abstract:Despite the progress in self-supervised learning (SSL) for speech and music, existing models treat these domains separately, limiting their capacity for unified audio understanding. A unified model is desirable for applications that require general representations, e.g. audio large language models. Nonetheless, directly training a general model for speech and music is computationally expensive. Knowledge Distillation of teacher ensembles may be a natural solution, but we posit that decoupling the distillation of the speech and music SSL models allows for more flexibility. Thus, we propose to learn distilled task vectors and then linearly interpolate them to form a unified speech+music model. This strategy enables flexible domain emphasis through adjustable weights and is also simpler to train. Experiments on speech and music benchmarks demonstrate that our method yields superior overall performance compared to ensemble distillation.