Abstract:A generalist agent must continuously learn and adapt throughout its lifetime, achieving efficient forward transfer while minimizing catastrophic forgetting. Previous work within the dominant pretrain-then-finetune paradigm has explored parameter-efficient fine-tuning for single-task adaptation, effectively steering a frozen pretrained model with a small number of parameters. However, in the context of lifelong learning, these methods rely on the impractical assumption of a test-time task identifier and restrict knowledge sharing among isolated adapters. To address these limitations, we propose Dynamic Mixture of Progressive Parameter-Efficient Expert Library (DMPEL) for lifelong robot learning. DMPEL progressively learn a low-rank expert library and employs a lightweight router to dynamically combine experts into an end-to-end policy, facilitating flexible behavior during lifelong adaptation. Moreover, by leveraging the modular structure of the fine-tuned parameters, we introduce coefficient replay to guide the router in accurately retrieving frozen experts for previously encountered tasks, thereby mitigating catastrophic forgetting. This method is significantly more storage- and computationally-efficient than applying demonstration replay to the entire policy. Extensive experiments on the lifelong manipulation benchmark LIBERO demonstrate that our framework outperforms state-of-the-art lifelong learning methods in success rates across continual adaptation, while utilizing minimal trainable parameters and storage.
Abstract:Although graph contrastive learning (GCL) has been widely investigated, it is still a challenge to generate effective and stable graph augmentations. Existing methods often apply heuristic augmentation like random edge dropping, which may disrupt important graph structures and result in unstable GCL performance. In this paper, we propose Positive-incentive Noise driven Graph Data Augmentation (PiNGDA), where positive-incentive noise (pi-noise) scientifically analyzes the beneficial effect of noise under the information theory. To bridge the standard GCL and pi-noise framework, we design a Gaussian auxiliary variable to convert the loss function to information entropy. We prove that the standard GCL with pre-defined augmentations is equivalent to estimate the beneficial noise via the point estimation. Following our analysis, PiNGDA is derived from learning the beneficial noise on both topology and attributes through a trainable noise generator for graph augmentations, instead of the simple estimation. Since the generator learns how to produce beneficial perturbations on graph topology and node attributes, PiNGDA is more reliable compared with the existing methods. Extensive experimental results validate the effectiveness and stability of PiNGDA.
Abstract:Recently, vision transformers (ViTs) have achieved excellent performance on vision tasks by measuring the global self-attention among the image patches. Given $n$ patches, they will have quadratic complexity such as $\mathcal{O}(n^2)$ and the time cost is high when splitting the input image with a small granularity. Meanwhile, the pivotal information is often randomly gathered in a few regions of an input image, some tokens may not be helpful for the downstream tasks. To handle this problem, we introduce an anchor-based efficient vision transformer (AnchorFormer), which employs the anchor tokens to learn the pivotal information and accelerate the inference. Firstly, by estimating the bipartite attention between the anchors and tokens, the complexity will be reduced from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$, where $m$ is an anchor number and $m < n$. Notably, by representing the anchors with the neurons in a neural layer, we can differentiable learn these distributions and approximate global self-attention through the Markov process. Moreover, we extend the proposed model to three downstream tasks including classification, detection, and segmentation. Extensive experiments show the effectiveness of our AnchorFormer, e.g., achieving up to a 9.0% higher accuracy or 46.7% FLOPs reduction on ImageNet classification, 81.3% higher mAP on COCO detection under comparable FLOPs, as compared to the current baselines.
Abstract:Vision-language-action (VLA) models have shown promise as generalist robotic policies by jointly leveraging visual, linguistic, and proprioceptive modalities to generate action trajectories. While recent benchmarks have advanced VLA research in domestic tasks, professional science-oriented domains remain underexplored. We introduce AutoBio, a simulation framework and benchmark designed to evaluate robotic automation in biology laboratory environments--an application domain that combines structured protocols with demanding precision and multimodal interaction. AutoBio extends existing simulation capabilities through a pipeline for digitizing real-world laboratory instruments, specialized physics plugins for mechanisms ubiquitous in laboratory workflows, and a rendering stack that support dynamic instrument interfaces and transparent materials through physically based rendering. Our benchmark comprises biologically grounded tasks spanning three difficulty levels, enabling standardized evaluation of language-guided robotic manipulation in experimental protocols. We provide infrastructure for demonstration generation and seamless integration with VLA models. Baseline evaluations with two SOTA VLA models reveal significant gaps in precision manipulation, visual reasoning, and instruction following in scientific workflows. By releasing AutoBio, we aim to catalyze research on generalist robotic systems for complex, high-precision, and multimodal professional environments. The simulator and benchmark are publicly available to facilitate reproducible research.
Abstract:This paper proposes a new perspective for analyzing the generalization power of deep neural networks (DNNs), i.e., directly disentangling and analyzing the dynamics of generalizable and non-generalizable interaction encoded by a DNN through the training process. Specifically, this work builds upon the recent theoretical achievement in explainble AI, which proves that the detailed inference logic of DNNs can be can be strictly rewritten as a small number of AND-OR interaction patterns. Based on this, we propose an efficient method to quantify the generalization power of each interaction, and we discover a distinct three-phase dynamics of the generalization power of interactions during training. In particular, the early phase of training typically removes noisy and non-generalizable interactions and learns simple and generalizable ones. The second and the third phases tend to capture increasingly complex interactions that are harder to generalize. Experimental results verify that the learning of non-generalizable interactions is the the direct cause for the gap between the training and testing losses.
Abstract:Large vision-language models (VLMs) have demonstrated remarkable capabilities in open-world multimodal understanding, yet their high computational overheads pose great challenges for practical deployment. Some recent works have proposed methods to accelerate VLMs by pruning redundant visual tokens guided by the attention maps of VLM's early layers. Despite the success of these token pruning methods, they still suffer from two major shortcomings: (i) considerable accuracy drop due to insensitive attention signals in early layers, and (ii) limited speedup when generating long responses (e.g., 30 tokens). To address the limitations above, we present TwigVLM -- a simple and general architecture by growing a lightweight twig upon an early layer of the base VLM. Compared with most existing VLM acceleration methods purely based on visual token pruning, our TwigVLM not only achieves better accuracy retention by employing a twig-guided token pruning (TTP) strategy, but also yields higher generation speed by utilizing a self-speculative decoding (SSD) strategy. Taking LLaVA-1.5-7B as the base VLM, experimental results show that TwigVLM preserves 96% of the original performance after pruning 88.9% of visual tokens and achieves 154% speedup in generating long responses, delivering significantly better performance in terms of both accuracy and speed over the state-of-the-art VLM acceleration methods. Code will be made publicly available.
Abstract:Recent Customized Portrait Generation (CPG) methods, taking a facial image and a textual prompt as inputs, have attracted substantial attention. Although these methods generate high-fidelity portraits, they fail to prevent the generated portraits from being tracked and misused by malicious face recognition systems. To address this, this paper proposes a Customized Portrait Generation framework with facial Adversarial attacks (Adv-CPG). Specifically, to achieve facial privacy protection, we devise a lightweight local ID encryptor and an encryption enhancer. They implement progressive double-layer encryption protection by directly injecting the target identity and adding additional identity guidance, respectively. Furthermore, to accomplish fine-grained and personalized portrait generation, we develop a multi-modal image customizer capable of generating controlled fine-grained facial features. To the best of our knowledge, Adv-CPG is the first study that introduces facial adversarial attacks into CPG. Extensive experiments demonstrate the superiority of Adv-CPG, e.g., the average attack success rate of the proposed Adv-CPG is 28.1% and 2.86% higher compared to the SOTA noise-based attack methods and unconstrained attack methods, respectively.
Abstract:Recently, there has been growing interest in leveraging large language models (LLMs) to generate symbolic world models from textual descriptions. Although LLMs have been extensively explored in the context of world modeling, prior studies encountered several challenges, including evaluation randomness, dependence on indirect metrics, and a limited domain scope. To address these limitations, we introduce a novel benchmark, Text2World, based on planning domain definition language (PDDL), featuring hundreds of diverse domains and employing multi-criteria, execution-based metrics for a more robust evaluation. We benchmark current LLMs using Text2World and find that reasoning models trained with large-scale reinforcement learning outperform others. However, even the best-performing model still demonstrates limited capabilities in world modeling. Building on these insights, we examine several promising strategies to enhance the world modeling capabilities of LLMs, including test-time scaling, agent training, and more. We hope that Text2World can serve as a crucial resource, laying the groundwork for future research in leveraging LLMs as world models. The project page is available at https://text-to-world.github.io/.
Abstract:With the advancement of pre-trained vision-language (VL) models, enhancing the alignment between visual and linguistic modalities in downstream tasks has emerged as a critical challenge. Different from existing fine-tuning methods that add extra modules to these two modalities, we investigate whether the frozen model can be fine-tuned by customized noise. Our approach is motivated by the scientific study of beneficial noise, namely Positive-incentive Noise (Pi-noise or $\pi$-noise) , which quantitatively analyzes the impact of noise. It therefore implies a new scheme to learn beneficial noise distribution that can be employed to fine-tune VL models. Focusing on few-shot classification tasks based on CLIP, we reformulate the inference process of CLIP and apply variational inference, demonstrating how to generate $\pi$-noise towards visual and linguistic modalities. Then, we propose Positive-incentive Noise Injector (PiNI), which can fine-tune CLIP via injecting noise into both visual and text encoders. Since the proposed method can learn the distribution of beneficial noise, we can obtain more diverse embeddings of vision and language to better align these two modalities for specific downstream tasks within limited computational resources. We evaluate different noise incorporation approaches and network architectures of PiNI. The evaluation across 11 datasets demonstrates its effectiveness.
Abstract:Graph contrastive learning (GCL) aims to learn representations from unlabeled graph data in a self-supervised manner and has developed rapidly in recent years. However, edgelevel contrasts are not well explored by most existing GCL methods. Most studies in GCL only regard edges as auxiliary information while updating node features. One of the primary obstacles of edge-based GCL is the heavy computation burden. To tackle this issue, we propose a model that can efficiently learn edge features for GCL, namely AugmentationFree Edge Contrastive Learning (AFECL) to achieve edgeedge contrast. AFECL depends on no augmentation consisting of two parts. Firstly, we design a novel edge feature generation method, where edge features are computed by embedding concatenation of their connected nodes. Secondly, an edge contrastive learning scheme is developed, where edges connecting the same nodes are defined as positive pairs, and other edges are defined as negative pairs. Experimental results show that compared with recent state-of-the-art GCL methods or even some supervised GNNs, AFECL achieves SOTA performance on link prediction and semi-supervised node classification of extremely scarce labels. The source code is available at https://github.com/YujunLi361/AFECL.