The University of Texas at Arlington
Abstract:Multi-view hand mesh reconstruction is a critical task for applications in virtual reality and human-computer interaction, but it remains a formidable challenge. Although existing multi-view hand reconstruction methods achieve remarkable accuracy, they typically come with an intensive computational burden that hinders real-time inference. To this end, we propose MLPHand, a novel method designed for real-time multi-view single hand reconstruction. MLP Hand consists of two primary modules: (1) a lightweight MLP-based Skeleton2Mesh model that efficiently recovers hand meshes from hand skeletons, and (2) a multi-view geometry feature fusion prediction module that enhances the Skeleton2Mesh model with detailed geometric information from multiple views. Experiments on three widely used datasets demonstrate that MLPHand can reduce computational complexity by 90% while achieving comparable reconstruction accuracy to existing state-of-the-art baselines.
Abstract:Text-to-image (T2I) diffusion models have demonstrated impressive image generation capabilities. Still, their computational intensity prohibits resource-constrained organizations from deploying T2I models after fine-tuning them on their internal target data. While pruning techniques offer a potential solution to reduce the computational burden of T2I models, static pruning methods use the same pruned model for all input prompts, overlooking the varying capacity requirements of different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-network for each prompt, but it prevents batch parallelism on GPUs. To overcome these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning method designed for T2I diffusion models. Central to our approach is a prompt router model, which learns to determine the required capacity for an input text prompt and routes it to an architecture code, given a total desired compute budget for prompts. Each architecture code represents a specialized model tailored to the prompts assigned to it, and the number of codes is a hyperparameter. We train the prompt router and architecture codes using contrastive learning, ensuring that similar prompts are mapped to nearby codes. Further, we employ optimal transport to prevent the codes from collapsing into a single one. We demonstrate APTP's effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and COCO as target datasets. APTP outperforms the single-model pruning baselines in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned by APTP reveals they are semantically meaningful. We also show that APTP can automatically discover previously empirically found challenging prompts for SD, e.g., prompts for generating text images, assigning them to higher capacity codes.
Abstract:Training large vision-language models requires extensive, high-quality image-text pairs. Existing web-scraped datasets, however, are noisy and lack detailed image descriptions. To bridge this gap, we introduce PixelProse, a comprehensive dataset of over 16M (million) synthetically generated captions, leveraging cutting-edge vision-language models for detailed and accurate descriptions. To ensure data integrity, we rigorously analyze our dataset for problematic content, including child sexual abuse material (CSAM), personally identifiable information (PII), and toxicity. We also provide valuable metadata such as watermark presence and aesthetic scores, aiding in further dataset filtering. We hope PixelProse will be a valuable resource for future vision-language research. PixelProse is available at https://huggingface.co/datasets/tomg-group-umd/pixelprose
Abstract:Reinforcement learning with human feedback~(RLHF) is critical for aligning Large Language Models (LLMs) with human preference. Compared to the widely studied offline version of RLHF, \emph{e.g.} direct preference optimization (DPO), recent works have shown that the online variants achieve even better alignment. However, online alignment requires on-the-fly generation of new training data, which is costly, hard to parallelize, and suffers from varying quality and utility. In this paper, we propose a more efficient data exploration strategy for online preference tuning (OPTune), which does not rely on human-curated or pre-collected teacher responses but dynamically samples informative responses for on-policy preference alignment. During data generation, OPTune only selects prompts whose (re)generated responses can potentially provide more informative and higher-quality training signals than the existing responses. In the training objective, OPTune reweights each generated response (pair) by its utility in improving the alignment so that learning can be focused on the most helpful samples. Throughout our evaluations, OPTune'd LLMs maintain the instruction-following benefits provided by standard preference tuning whilst enjoying 1.27-1.56x faster training speed due to the efficient data exploration strategy.
Abstract:The recent emergence of 3D Gaussian splatting (3DGS) leverages the advantage of explicit point-based representations, which significantly improves the rendering speed and quality of novel-view synthesis. However, 3D radiance field rendering in environments with high-dynamic motion or challenging illumination condition remains problematic in real-world robotic tasks. The reason is that fast egomotion is prevalent real-world robotic tasks, which induces motion blur, leading to inaccuracies and artifacts in the reconstructed structure. To alleviate this problem, we propose Event3DGS, the first method that learns Gaussian Splatting solely from raw event streams. By exploiting the high temporal resolution of event cameras and explicit point-based representation, Event3DGS can reconstruct high-fidelity 3D structures solely from the event streams under fast egomotion. Our sparsity-aware sampling and progressive training approaches allow for better reconstruction quality and consistency. To further enhance the fidelity of appearance, we explicitly incorporate the motion blur formation process into a differentiable rasterizer, which is used with a limited set of blurred RGB images to refine the appearance. Extensive experiments on multiple datasets validate the superior rendering quality of Event3DGS compared with existing approaches, with over 95% lower training time and faster rendering speed in orders of magnitude.
Abstract:Language model (LM) watermarking techniques inject a statistical signal into LM-generated content by substituting the random sampling process with pseudo-random sampling, using watermark keys as the random seed. Among these statistical watermarking approaches, distortion-free watermarks are particularly crucial because they embed watermarks into LM-generated content without compromising generation quality. However, one notable limitation of pseudo-random sampling compared to true-random sampling is that, under the same watermark keys (i.e., key collision), the results of pseudo-random sampling exhibit correlations. This limitation could potentially undermine the distortion-free property. Our studies reveal that key collisions are inevitable due to the limited availability of watermark keys, and existing distortion-free watermarks exhibit a significant distribution bias toward the original LM distribution in the presence of key collisions. Moreover, achieving a perfect distortion-free watermark is impossible as no statistical signal can be embedded under key collisions. To reduce the distribution bias caused by key collisions, we introduce a new family of distortion-free watermarks--beta-watermark. Experimental results support that the beta-watermark can effectively reduce the distribution bias under key collisions.
Abstract:The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
Abstract:Image aesthetic evaluation is a highly prominent research domain in the field of computer vision. In recent years, there has been a proliferation of datasets and corresponding evaluation methodologies for assessing the aesthetic quality of photographic works, leading to the establishment of a relatively mature research environment. However, in contrast to the extensive research in photographic aesthetics, the field of aesthetic evaluation for paintings and Drawings has seen limited attention until the introduction of the BAID dataset in March 2023. This dataset solely comprises overall scores for high-quality artistic images. Our research marks the pioneering introduction of a multi-attribute, multi-category dataset specifically tailored to the field of painting: Aesthetics of Paintings and Drawings Dataset (APDD). The construction of APDD received active participation from 28 professional artists worldwide, along with dozens of students specializing in the field of art. This dataset encompasses 24 distinct artistic categories and 10 different aesthetic attributes. Each image in APDD has been evaluated by six professionally trained experts in the field of art, including assessments for both total aesthetic scores and aesthetic attribute scores. The final APDD dataset comprises a total of 4985 images, with an annotation count exceeding 31100 entries. Concurrently, we propose an innovative approach: Art Assessment Network for Specific Painting Styles (AANSPS), designed for the assessment of aesthetic attributes in mixed-attribute art datasets. Through this research, our goal is to catalyze advancements in the field of aesthetic evaluation for paintings and drawings, while enriching the available resources and methodologies for its further development and application.
Abstract:Structural model pruning is a prominent approach used for reducing the computational cost of Convolutional Neural Networks (CNNs) before their deployment on resource-constrained devices. Yet, the majority of proposed ideas require a pretrained model before pruning, which is costly to secure. In this paper, we propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models. The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers, and the resulting model's accuracy serves as its reward. We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy, and we regularize the model's weights to align with the selected structure by the agent. The evolving model's weights result in a dynamic reward function for the agent, which prevents using prominent episodic RL methods with stationary environment assumption for our purpose. We address this challenge by designing a mechanism to model the complex changing dynamics of the reward function and provide a representation of it to the RL agent. To do so, we take a learnable embedding for each training epoch and employ a recurrent model to calculate a representation of the changing environment. We train the recurrent model and embeddings using a decoder model to reconstruct observed rewards. Such a design empowers our agent to effectively leverage episodic observations along with the environment representations to learn a proper policy to determine performant sub-networks of the CNN model. Our extensive experiments on CIFAR-10 and ImageNet using ResNets and MobileNets demonstrate the effectiveness of our method.
Abstract:Few-Shot Class-Incremental Learning (FSCIL) models aim to incrementally learn new classes with scarce samples while preserving knowledge of old ones. Existing FSCIL methods usually fine-tune the entire backbone, leading to overfitting and hindering the potential to learn new classes. On the other hand, recent prompt-based CIL approaches alleviate forgetting by training prompts with sufficient data in each task. In this work, we propose a novel framework named Attention-aware Self-adaptive Prompt (ASP). ASP encourages task-invariant prompts to capture shared knowledge by reducing specific information from the attention aspect. Additionally, self-adaptive task-specific prompts in ASP provide specific information and transfer knowledge from old classes to new classes with an Information Bottleneck learning objective. In summary, ASP prevents overfitting on base task and does not require enormous data in few-shot incremental tasks. Extensive experiments on three benchmark datasets validate that ASP consistently outperforms state-of-the-art FSCIL and prompt-based CIL methods in terms of both learning new classes and mitigating forgetting.