Alert button
Picture for Lichang Chen

Lichang Chen

Alert button

GPT-4 Vision on Medical Image Classification -- A Case Study on COVID-19 Dataset

Oct 27, 2023
Ruibo Chen, Tianyi Xiong, Yihan Wu, Guodong Liu, Zhengmian Hu, Lichang Chen, Yanshuo Chen, Chenxi Liu, Heng Huang

This technical report delves into the application of GPT-4 Vision (GPT-4V) in the nuanced realm of COVID-19 image classification, leveraging the transformative potential of in-context learning to enhance diagnostic processes.

Viaarxiv icon

HallusionBench: You See What You Think? Or You Think What You See? An Image-Context Reasoning Benchmark Challenging for GPT-4V(ision), LLaVA-1.5, and Other Multi-modality Models

Oct 23, 2023
Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen, Yaser Yacoob, Dinesh Manocha, Tianyi Zhou

Large language models (LLMs), after being aligned with vision models and integrated into vision-language models (VLMs), can bring impressive improvement in image reasoning tasks. This was shown by the recently released GPT-4V(ison), LLaVA-1.5, etc. However, the strong language prior in these SOTA LVLMs can be a double-edged sword: they may ignore the image context and solely rely on the (even contradictory) language prior for reasoning. In contrast, the vision modules in VLMs are weaker than LLMs and may result in misleading visual representations, which are then translated to confident mistakes by LLMs. To study these two types of VLM mistakes, i.e., language hallucination and visual illusion, we curated HallusionBench, an image-context reasoning benchmark that is still challenging to even GPT-4V and LLaVA-1.5. We provide a detailed analysis of examples in HallusionBench, which sheds novel insights on the illusion or hallucination of VLMs and how to improve them in the future. The benchmark and codebase will be released at https://github.com/tianyi-lab/HallusionBench.

Viaarxiv icon

AlpaCare:Instruction-tuned Large Language Models for Medical Application

Oct 23, 2023
Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, Linda Ruth Petzold

Large Language Models (LLMs) have demonstrated significant enhancements in instruction-following abilities through instruction tuning, achieving notable performances across various tasks. Previous research has focused on fine-tuning medical domain-specific LLMs using an extensive array of medical-specific data, incorporating millions of pieces of biomedical literature to augment their medical capabilities. However, existing medical instruction-tuned LLMs have been constrained by the limited scope of tasks and instructions available, restricting the efficacy of instruction tuning and adversely affecting performance in the general domain. In this paper, we fine-tune LLaMA-series models using 52k diverse, machine-generated, medical instruction-following data, MedInstruct-52k, resulting in the model AlpaCare. Comprehensive experimental results on both general and medical-specific domain free-form instruction evaluations showcase AlpaCare's strong medical proficiency and generalizability compared to previous instruction-tuned models in both medical and general domains. We provide public access to our MedInstruct-52k dataset and a clinician-crafted free-form instruction test set, MedInstruct-test, along with our codebase, to foster further research and development. Our project page is available at https://github.com/XZhang97666/AlpaCare.

Viaarxiv icon

Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning

Oct 18, 2023
Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Heng Huang, Jiuxiang Gu, Tianyi Zhou

Recent advancements in Large Language Models (LLMs) have expanded the horizons of natural language understanding and generation. Notably, the output control and alignment with the input of LLMs can be refined through instruction tuning. However, as highlighted in several studies, low-quality data in the training set are usually detrimental to instruction tuning, resulting in inconsistent or even misleading LLM outputs. We propose a novel method, termed "reflection-tuning," which addresses the problem by self-improvement and judging capabilities of LLMs. This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data. Extensive experiments on widely used evaluation benchmarks show that LLMs trained with our recycled data outperform those trained with existing datasets in various benchmarks.

Viaarxiv icon

From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning

Sep 08, 2023
Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, Jing Xiao

Figure 1 for From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
Figure 2 for From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
Figure 3 for From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
Figure 4 for From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning

In the realm of Large Language Models, the balance between instruction data quality and quantity has become a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from vast open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal tool to identify discrepancies between a model's expected responses and its autonomous generation prowess. Through the adept application of IFD, cherry samples are pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on renowned datasets like Alpaca and WizardLM underpin our findings; with a mere 10% of conventional data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the optimization of LLMs, promising both efficiency and resource-conscious advancements.

Viaarxiv icon

Virtual Prompt Injection for Instruction-Tuned Large Language Models

Jul 31, 2023
Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang Ren, Hongxia Jin

Figure 1 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 2 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 3 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 4 for Virtual Prompt Injection for Instruction-Tuned Large Language Models

We present Virtual Prompt Injection (VPI) for instruction-tuned Large Language Models (LLMs). VPI allows an attacker-specified virtual prompt to steer the model behavior under specific trigger scenario without any explicit injection in model input. For instance, if an LLM is compromised with the virtual prompt "Describe Joe Biden negatively." for Joe Biden-related instructions, then any service deploying this model will propagate biased views when handling user queries related to Joe Biden. VPI is especially harmful for two primary reasons. Firstly, the attacker can take fine-grained control over LLM behaviors by defining various virtual prompts, exploiting LLMs' proficiency in following instructions. Secondly, this control is achieved without any interaction from the attacker while the model is in service, leading to persistent attack. To demonstrate the threat, we propose a simple method for performing VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM with VPI. For example, by injecting only 52 poisoned examples (0.1% of the training data size) into the instruction tuning data, the percentage of negative responses given by the trained model on Joe Biden-related queries change from 0% to 40%. We thus highlight the necessity of ensuring the integrity of the instruction-tuning data as little poisoned data can cause stealthy and persistent harm to the deployed model. We further explore the possible defenses and identify data filtering as an effective way to defend against the poisoning attacks. Our project page is available at https://poison-llm.github.io.

Viaarxiv icon

AlpaGasus: Training A Better Alpaca with Fewer Data

Jul 17, 2023
Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, Hongxia Jin

Figure 1 for AlpaGasus: Training A Better Alpaca with Fewer Data
Figure 2 for AlpaGasus: Training A Better Alpaca with Fewer Data
Figure 3 for AlpaGasus: Training A Better Alpaca with Fewer Data
Figure 4 for AlpaGasus: Training A Better Alpaca with Fewer Data

Large language models~(LLMs) obtain instruction-following capability through instruction-finetuning (IFT) on supervised instruction/response data. However, widely used IFT datasets (e.g., Alpaca's 52k data) surprisingly contain many low-quality instances with incorrect or irrelevant responses, which are misleading and detrimental to IFT. In this paper, we propose a simple and effective data selection strategy that automatically identifies and removes low-quality data using a strong LLM (e.g., ChatGPT). To this end, we introduce AlpaGasus, which is finetuned on only 9k high-quality data filtered from the 52k Alpaca data. AlpaGasus significantly outperforms the original Alpaca as evaluated by GPT-4 on multiple test sets and its 13B variant matches $>90\%$ performance of its teacher LLM (i.e., Text-Davinci-003) on test tasks. It also provides 5.7x faster training, reducing the training time for a 7B variant from 80 minutes (for Alpaca) to 14 minutes \footnote{We apply IFT for the same number of epochs as Alpaca(7B) but on fewer data, using 4$\times$NVIDIA A100 (80GB) GPUs and following the original Alpaca setting and hyperparameters.}. Overall, AlpaGasus demonstrates a novel data-centric IFT paradigm that can be generally applied to instruction-tuning data, leading to faster training and better instruction-following models. Our project page is available at: \url{https://lichang-chen.github.io/AlpaGasus/}.

* 22 pages; 22 figures 
Viaarxiv icon

InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models

Jun 05, 2023
Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, Tianyi Zhou

Figure 1 for InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models
Figure 2 for InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models
Figure 3 for InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models
Figure 4 for InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models

Large language models~(LLMs) are instruction followers, but it can be challenging to find the best instruction for different situations, especially for black-box LLMs on which backpropagation is forbidden. Instead of directly optimizing the discrete instruction, we optimize a low-dimensional soft prompt applied to an open-source LLM to generate the instruction for the black-box LLM. On each iteration of the proposed method, which we call InstructZero, a soft prompt is converted into an instruction using the open-source LLM, which is then submitted to the black-box LLM for zero-shot evaluation, and the performance is sent to Bayesian optimization to produce new soft prompts improving the zero-shot performance. We evaluate InstructZero on different combinations of open-source LLMs and APIs including Vicuna and ChatGPT. Our results show that InstructZero outperforms SOTA auto-instruction methods across a variety of downstream tasks. Our code and data are publicly available at https://github.com/Lichang-Chen/InstructZero.

* 15 pages; 9 figures; Our code is available at https://lichang-chen.github.io/InstructZero/ 
Viaarxiv icon

Prompting Language-Informed Distribution for Compositional Zero-Shot Learning

May 23, 2023
Wentao Bao, Lichang Chen, Heng Huang, Yu Kong

Figure 1 for Prompting Language-Informed Distribution for Compositional Zero-Shot Learning
Figure 2 for Prompting Language-Informed Distribution for Compositional Zero-Shot Learning
Figure 3 for Prompting Language-Informed Distribution for Compositional Zero-Shot Learning
Figure 4 for Prompting Language-Informed Distribution for Compositional Zero-Shot Learning

The compositional zero-shot learning (CZSL) task aims to recognize unseen compositional visual concepts (i.e., sliced tomatoes), where the models are learned only from the seen compositions (i.e., sliced potatoes and red tomatoes). Thanks to the prompt tuning on large pre-trained visual language models such as CLIP, recent literature shows impressively better CZSL performance than traditional vision-based methods. However, the key aspects that impact the generalization to unseen compositions, including the diversity and informativeness of class context, and the entanglement between visual primitives (i.e., states and objects), are not properly addressed in existing CLIP-based CZSL literature. In this paper, we propose a model by prompting the language-informed distribution, aka., PLID, for the CZSL task. Specifically, the PLID leverages pre-trained large language models (LLM) to 1) formulate the language-informed class distribution, and 2) enhance the compositionality of the softly prompted class embedding. Moreover, a stochastic logit mixup strategy is proposed to dynamically fuse the decisions from the predictions in the compositional and the primitive logit space. Orthogonal to the existing literature of soft, hard, or distributional prompts, our method advocates prompting the LLM-supported class distribution that leads to a better compositional zero-shot generalization. Experimental results on MIT-States, UT-Zappos, and C-GQA datasets show the superior performance of the PLID to the prior arts. The code and models will be publicly released.

Viaarxiv icon