Abstract:The application of AI in psychiatric diagnosis faces significant challenges, including the subjective nature of mental health assessments, symptom overlap across disorders, and privacy constraints limiting data availability. To address these issues, we present MoodAngels, the first specialized multi-agent framework for mood disorder diagnosis. Our approach combines granular-scale analysis of clinical assessments with a structured verification process, enabling more accurate interpretation of complex psychiatric data. Complementing this framework, we introduce MoodSyn, an open-source dataset of 1,173 synthetic psychiatric cases that preserves clinical validity while ensuring patient privacy. Experimental results demonstrate that MoodAngels outperforms conventional methods, with our baseline agent achieving 12.3% higher accuracy than GPT-4o on real-world cases, and our full multi-agent system delivering further improvements. Evaluation in the MoodSyn dataset demonstrates exceptional fidelity, accurately reproducing both the core statistical patterns and complex relationships present in the original data while maintaining strong utility for machine learning applications. Together, these contributions provide both an advanced diagnostic tool and a critical research resource for computational psychiatry, bridging important gaps in AI-assisted mental health assessment.
Abstract:Data-driven approaches for depression diagnosis have emerged as a significant research focus in neuromedicine, driven by the development of relevant datasets. Recently, graph neural network (GNN)-based models have gained widespread adoption due to their ability to capture brain channel functional connectivity from both spatial and temporal perspectives. However, their effectiveness is hindered by the absence of a robust temporal biomarker. In this paper, we introduce a novel and effective biomarker for depression diagnosis by leveraging the discrete Fourier transform (DFT) and propose a customized graph network architecture based on Temporal Graph Convolutional Network (TGCN). Our model was trained on a dataset comprising 1,086 subjects, which is over 10 times larger than previous datasets in the field of depression diagnosis. Furthermore, to align with medical requirements, we performed propensity score matching (PSM) to create a refined subset, referred to as the PSM dataset. Experimental results demonstrate that incorporating our newly designed biomarker enhances the representation of temporal characteristics in brain channels, leading to improved F1 scores in both the real-world dataset and the PSM dataset. This advancement has the potential to contribute to the development of more effective depression diagnostic tools. In addition, we used SHapley Additive exPlaination (SHAP) to validate the interpretability of our model, ensuring its practical applicability in medical settings.