Abstract:The Lottery Ticket Hypothesis (LTH) states that a randomly-initialized large neural network contains a small sub-network (i.e., winning tickets) which, when trained in isolation, can achieve comparable performance to the large network. LTH opens up a new path for network pruning. Existing proofs of LTH in Artificial Neural Networks (ANNs) are based on continuous activation functions, such as ReLU, which satisfying the Lipschitz condition. However, these theoretical methods are not applicable in Spiking Neural Networks (SNNs) due to the discontinuous of spiking function. We argue that it is possible to extend the scope of LTH by eliminating Lipschitz condition. Specifically, we propose a novel probabilistic modeling approach for spiking neurons with complicated spatio-temporal dynamics. Then we theoretically and experimentally prove that LTH holds in SNNs. According to our theorem, we conclude that pruning directly in accordance with the weight size in existing SNNs is clearly not optimal. We further design a new criterion for pruning based on our theory, which achieves better pruning results than baseline.
Abstract:Due to the binary spike signals making converting the traditional high-power multiply-accumulation (MAC) into a low-power accumulation (AC) available, the brain-inspired Spiking Neural Networks (SNNs) are gaining more and more attention. However, the binary spike propagation of the Full-Spike Neural Networks (FSNN) with limited time steps is prone to significant information loss. To improve performance, several state-of-the-art SNN models trained from scratch inevitably bring many non-spike operations. The non-spike operations cause additional computational consumption and may not be deployed on some neuromorphic hardware where only spike operation is allowed. To train a large-scale FSNN with high performance, this paper proposes a novel Dual-Stream Training (DST) method which adds a detachable Auxiliary Accumulation Pathway (AAP) to the full spiking residual networks. The accumulation in AAP could compensate for the information loss during the forward and backward of full spike propagation, and facilitate the training of the FSNN. In the test phase, the AAP could be removed and only the FSNN remained. This not only keeps the lower energy consumption but also makes our model easy to deploy. Moreover, for some cases where the non-spike operations are available, the APP could also be retained in test inference and improve feature discrimination by introducing a little non-spike consumption. Extensive experiments on ImageNet, DVS Gesture, and CIFAR10-DVS datasets demonstrate the effectiveness of DST.
Abstract:Event cameras are considered to have great potential for computer vision and robotics applications because of their high temporal resolution and low power consumption characteristics. However, the event stream output from event cameras has asynchronous, sparse characteristics that existing computer vision algorithms cannot handle. Spiking neural network is a novel event-based computational paradigm that is considered to be well suited for processing event camera tasks. However, direct training of deep SNNs suffers from degradation problems. This work addresses these problems by proposing a spiking neural network architecture with a novel residual block designed and multi-dimension attention modules combined, focusing on the problem of depth prediction. In addition, a novel event stream representation method is explicitly proposed for SNNs. This model outperforms previous ANN networks of the same size on the MVSEC dataset and shows great computational efficiency.
Abstract:The main streams of human activity recognition (HAR) algorithms are developed based on RGB cameras which are suffered from illumination, fast motion, privacy-preserving, and large energy consumption. Meanwhile, the biologically inspired event cameras attracted great interest due to their unique features, such as high dynamic range, dense temporal but sparse spatial resolution, low latency, low power, etc. As it is a newly arising sensor, even there is no realistic large-scale dataset for HAR. Considering its great practical value, in this paper, we propose a large-scale benchmark dataset to bridge this gap, termed HARDVS, which contains 300 categories and more than 100K event sequences. We evaluate and report the performance of multiple popular HAR algorithms, which provide extensive baselines for future works to compare. More importantly, we propose a novel spatial-temporal feature learning and fusion framework, termed ESTF, for event stream based human activity recognition. It first projects the event streams into spatial and temporal embeddings using StemNet, then, encodes and fuses the dual-view representations using Transformer networks. Finally, the dual features are concatenated and fed into a classification head for activity prediction. Extensive experiments on multiple datasets fully validated the effectiveness of our model. Both the dataset and source code will be released on \url{https://github.com/Event-AHU/HARDVS}.
Abstract:Benefiting from the event-driven and sparse spiking characteristics of the brain, spiking neural networks (SNNs) are becoming an energy-efficient alternative to artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a great hindrance to deploying SNNs ubiquitously for a long time. To leverage the full potential of SNNs, we study the effect of attention mechanisms in SNNs. We first present our idea of attention with a plug-and-play kit, termed the Multi-dimensional Attention (MA). Then, a new attention SNN architecture with end-to-end training called "MA-SNN" is proposed, which infers attention weights along the temporal, channel, as well as spatial dimensions separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response in a data-dependent way. At the cost of negligible additional parameters, MA facilitates vanilla SNNs to achieve sparser spiking activity, better performance, and energy efficiency concurrently. Experiments are conducted in event-based DVS128 Gesture/Gait action recognition and ImageNet-1k image classification. On Gesture/Gait, the spike counts are reduced by 84.9%/81.6%, and the task accuracy and energy efficiency are improved by 5.9%/4.7% and 3.4$\times$/3.2$\times$. On ImageNet-1K, we achieve top-1 accuracy of 75.92% and 77.08% on single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. To our best knowledge, this is for the first time, that the SNN community achieves comparable or even better performance compared with its ANN counterpart in the large-scale dataset. Our work lights up SNN's potential as a general backbone to support various applications for SNNs, with a great balance between effectiveness and efficiency.
Abstract:Zero-shot learning (ZSL) aims to recognize classes that do not have samples in the training set. One representative solution is to directly learn an embedding function associating visual features with corresponding class semantics for recognizing new classes. Many methods extend upon this solution, and recent ones are especially keen on extracting rich features from images, e.g. attribute features. These attribute features are normally extracted within each individual image; however, the common traits for features across images yet belonging to the same attribute are not emphasized. In this paper, we propose a new framework to boost ZSL by explicitly learning attribute prototypes beyond images and contrastively optimizing them with attribute-level features within images. Besides the novel architecture, two elements are highlighted for attribute representations: a new prototype generation module is designed to generate attribute prototypes from attribute semantics; a hard example-based contrastive optimization scheme is introduced to reinforce attribute-level features in the embedding space. We explore two alternative backbones, CNN-based and transformer-based, to build our framework and conduct experiments on three standard benchmarks, CUB, SUN, AwA2. Results on these benchmarks demonstrate that our method improves the state of the art by a considerable margin. Our codes will be available at https://github.com/dyabel/CoAR-ZSL.git
Abstract:Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
Abstract:Spiking neural networks (SNNs) are known as a typical kind of brain-inspired models with their unique features of rich neuronal dynamics, diverse coding schemes and low power consumption properties. How to obtain a high-accuracy model has always been the main challenge in the field of SNN. Currently, there are two mainstream methods, i.e., obtaining a converted SNN through converting a well-trained Artificial Neural Network (ANN) to its SNN counterpart or training an SNN directly. However, the inference time of a converted SNN is too long, while SNN training is generally very costly and inefficient. In this work, a new SNN training paradigm is proposed by combining the concepts of the two different training methods with the help of the pretrain technique and BP-based deep SNN training mechanism. We believe that the proposed paradigm is a more efficient pipeline for training SNNs. The pipeline includes pipeS for static data transfer tasks and pipeD for dynamic data transfer tasks. SOTA results are obtained in a large-scale event-driven dataset ES-ImageNet. For training acceleration, we achieve the same (or higher) best accuracy as similar LIF-SNNs using 1/10 training time on ImageNet-1K and 2/5 training time on ES-ImageNet and also provide a time-accuracy benchmark for a new dataset ES-UCF101. These experimental results reveal the similarity of the functions of parameters between ANNs and SNNs and also demonstrate the various potential applications of this SNN training pipeline.
Abstract:Graph neural networks (GNNs) have been a hot spot of recent research and are widely utilized in diverse applications. However, with the use of huger data and deeper models, an urgent demand is unsurprisingly made to accelerate GNNs for more efficient execution. In this paper, we provide a comprehensive survey on acceleration methods for GNNs from an algorithmic perspective. We first present a new taxonomy to classify existing acceleration methods into five categories. Based on the classification, we systematically discuss these methods and highlight their correlations. Next, we provide comparisons from aspects of the efficiency and characteristics of these methods. Finally, we suggest some promising prospects for future research.
Abstract:Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assess their applicability to the characteristics of spike-based communication and spatiotemporal dynamics. In this paper, we first identify that this negligence leads to impeded information flow and accompanying degradation problem in previous residual SNNs. Then we propose a novel SNN-oriented residual block, MS-ResNet, which is able to significantly extend the depth of directly trained SNNs, e.g. up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. We validate the effectiveness of MS-ResNet on both frame-based and neuromorphic datasets, and MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, the first time in the domain of directly trained SNNs. Great energy efficiency is also observed that on average only one spike per neuron is needed to classify an input sample. We believe our powerful and scalable models will provide a strong support for further exploration of SNNs.