Abstract:The state of the arts in vision-language pretraining (VLP) achieves exemplary performance but suffers from high training costs resulting from slow convergence and long training time, especially on large-scale web datasets. An essential obstacle to training efficiency lies in the entangled prediction rate (percentage of tokens for reconstruction) and corruption rate (percentage of corrupted tokens) in masked language modeling (MLM), that is, a proper corruption rate is achieved at the cost of a large portion of output tokens being excluded from prediction loss. To accelerate the convergence of VLP, we propose a new pretraining task, namely, free language modeling (FLM), that enables a 100% prediction rate with arbitrary corruption rates. FLM successfully frees the prediction rate from the tie-up with the corruption rate while allowing the corruption spans to be customized for each token to be predicted. FLM-trained models are encouraged to learn better and faster given the same GPU time by exploiting bidirectional contexts more flexibly. Extensive experiments show FLM could achieve an impressive 2.5x pretraining time reduction in comparison to the MLM-based methods, while keeping competitive performance on both vision-language understanding and generation tasks. Code will be public at https://github.com/TencentARC/FLM.
Abstract:Joint video-language learning has received increasing attention in recent years. However, existing works mainly focus on single or multiple trimmed video clips (events), which makes human-annotated event boundaries necessary during inference. To break away from the ties, we propose a grounded vision-language learning framework for untrimmed videos, which automatically detects informative events and effectively excavates the alignments between multi-sentence descriptions and corresponding event segments. Instead of coarse-level video-language alignments, we present two dual pretext tasks to encourage fine-grained segment-level alignments, i.e., text-to-event grounding (TEG) and event-to-text generation (ETG). TEG learns to adaptively ground the possible event proposals given a set of sentences by estimating the cross-modal distance in a joint semantic space. Meanwhile, ETG aims to reconstruct (generate) the matched texts given event proposals, encouraging the event representation to retain meaningful semantic information. To encourage accurate label assignment between the event set and the text set, we propose a novel semantic-aware cost to mitigate the sub-optimal matching results caused by ambiguous boundary annotations. Our framework is easily extensible to tasks covering visually-grounded language understanding and generation. We achieve state-of-the-art dense video captioning performance on ActivityNet Captions, YouCook2 and YouMakeup, and competitive performance on several other language generation and understanding tasks. Our method also achieved 1st place in both the MTVG and MDVC tasks of the PIC 4th Challenge.
Abstract:Triplet learning, i.e. learning from triplet data, has attracted much attention in computer vision tasks with an extremely large number of categories, e.g., face recognition and person re-identification. Albeit with rapid progress in designing and applying triplet learning algorithms, there is a lacking study on the theoretical understanding of their generalization performance. To fill this gap, this paper investigates the generalization guarantees of triplet learning by leveraging the stability analysis. Specifically, we establish the first general high-probability generalization bound for the triplet learning algorithm satisfying the uniform stability, and then obtain the excess risk bounds of the order $O(n^{-\frac{1}{2}} \mathrm{log}n)$ for both stochastic gradient descent (SGD) and regularized risk minimization (RRM), where $2n$ is approximately equal to the number of training samples. Moreover, an optimistic generalization bound in expectation as fast as $O(n^{-1})$ is derived for RRM in a low noise case via the on-average stability analysis. Finally, our results are applied to triplet metric learning to characterize its theoretical underpinning.
Abstract:Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but their performance deviates greatly. We realize that the lack of actual IM settings most probably hinders the development and usage of these methods in real-world applications. As far as we know, IAD methods are not evaluated systematically. As a result, this makes it difficult for researchers to analyze them because they are designed for different or special cases. To solve this problem, we first propose a uniform IM setting to assess how well these algorithms perform, which includes several aspects, i.e., various levels of supervision (unsupervised vs. semi-supervised), few-shot learning, continual learning, noisy labels, memory usage, and inference speed. Moreover, we skillfully build a comprehensive image anomaly detection benchmark (IM-IAD) that includes 16 algorithms on 7 mainstream datasets with uniform settings. Our extensive experiments (17,017 in total) provide in-depth insights for IAD algorithm redesign or selection under the IM setting. Next, the proposed benchmark IM-IAD gives challenges as well as directions for the future. To foster reproducibility and accessibility, the source code of IM-IAD is uploaded on the website, https://github.com/M-3LAB/IM-IAD.
Abstract:The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
Abstract:In the area of fewshot anomaly detection (FSAD), efficient visual feature plays an essential role in memory bank M-based methods. However, these methods do not account for the relationship between the visual feature and its rotated visual feature, drastically limiting the anomaly detection performance. To push the limits, we reveal that rotation-invariant feature property has a significant impact in industrial-based FSAD. Specifically, we utilize graph representation in FSAD and provide a novel visual isometric invariant feature (VIIF) as anomaly measurement feature. As a result, VIIF can robustly improve the anomaly discriminating ability and can further reduce the size of redundant features stored in M by a large amount. Besides, we provide a novel model GraphCore via VIIFs that can fast implement unsupervised FSAD training and can improve the performance of anomaly detection. A comprehensive evaluation is provided for comparing GraphCore and other SOTA anomaly detection models under our proposed fewshot anomaly detection setting, which shows GraphCore can increase average AUC by 5.8%, 4.1%, 3.4%, and 1.6% on MVTec AD and by 25.5%, 22.0%, 16.9%, and 14.1% on MPDD for 1, 2, 4, and 8-shot cases, respectively.
Abstract:With the development of depth sensors in recent years, RGBD object tracking has received significant attention. Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference. However, some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored. On the other hand, some methods attempt to fuse the two modalities by treating them equally, resulting in the missing of modality-specific features. To tackle these limitations, we propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking. The first fusion module focuses on extracting the shared information between modalities based on cross-modal attention. The second aims at integrating the RGB-specific and depth-specific information to enhance the fused features. By fusing both the modality-shared and modality-specific information in a modality-aware scheme, our DMTracker can learn discriminative representations in complex tracking scenes. Experiments show that our proposed tracker achieves very promising results on challenging RGBD benchmarks.
Abstract:In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, most of the existing RGB-T SOD models focus on how to perform cross-modality feature fusion, ignoring whether thermal image is really always matter in SOD task. Starting from the definition and nature of this task, this paper rethinks the connotation of thermal modality, and proposes a network named TNet to solve the RGB-T SOD task. In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image, so as to regulate the role played by the two modalities. In addition, considering the role of thermal modality, we set up different cross-modality interaction mechanisms in the encoding phase and the decoding phase. On the one hand, we introduce a semantic constraint provider to enrich the semantics of thermal images in the encoding phase, which makes thermal modality more suitable for the SOD task. On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality. Extensive experiments on three datasets show that the proposed TNet achieves competitive performance compared with 20 state-of-the-art methods.
Abstract:Hashing that projects data into binary codes has shown extraordinary talents in cross-modal retrieval due to its low storage usage and high query speed. Despite their empirical success on some scenarios, existing cross-modal hashing methods usually fail to cross modality gap when fully-paired data with plenty of labeled information is nonexistent. To circumvent this drawback, motivated by the Divide-and-Conquer strategy, we propose Deep Manifold Hashing (DMH), a novel method of dividing the problem of semi-paired unsupervised cross-modal retrieval into three sub-problems and building one simple yet efficiency model for each sub-problem. Specifically, the first model is constructed for obtaining modality-invariant features by complementing semi-paired data based on manifold learning, whereas the second model and the third model aim to learn hash codes and hash functions respectively. Extensive experiments on three benchmarks demonstrate the superiority of our DMH compared with the state-of-the-art fully-paired and semi-paired unsupervised cross-modal hashing methods.
Abstract:Advertisement video editing aims to automatically edit advertising videos into shorter videos while retaining coherent content and crucial information conveyed by advertisers. It mainly contains two stages: video segmentation and segment assemblage. The existing method performs well at video segmentation stages but suffers from the problems of dependencies on extra cumbersome models and poor performance at the segment assemblage stage. To address these problems, we propose M-SAN (Multi-modal Segment Assemblage Network) which can perform efficient and coherent segment assemblage task end-to-end. It utilizes multi-modal representation extracted from the segments and follows the Encoder-Decoder Ptr-Net framework with the Attention mechanism. Importance-coherence reward is designed for training M-SAN. We experiment on the Ads-1k dataset with 1000+ videos under rich ad scenarios collected from advertisers. To evaluate the methods, we propose a unified metric, Imp-Coh@Time, which comprehensively assesses the importance, coherence, and duration of the outputs at the same time. Experimental results show that our method achieves better performance than random selection and the previous method on the metric. Ablation experiments further verify that multi-modal representation and importance-coherence reward significantly improve the performance. Ads-1k dataset is available at: https://github.com/yunlong10/Ads-1k