Abstract:Controllable video editing has demonstrated remarkable potential across diverse applications, particularly in scenarios where capturing or re-capturing real-world videos is either impractical or costly. This paper introduces a novel and efficient system named Place-Anything, which facilitates the insertion of any object into any video solely based on a picture or text description of the target object or element. The system comprises three modules: 3D generation, video reconstruction, and 3D target insertion. This integrated approach offers an efficient and effective solution for producing and editing high-quality videos by seamlessly inserting realistic objects. Through a user study, we demonstrate that our system can effortlessly place any object into any video using just a photograph of the object. Our demo video can be found at https://youtu.be/afXqgLLRnTE. Please also visit our project page https://place-anything.github.io to get access.
Abstract:With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. Given the remarkable capabilities of Large Language Models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey presents a comprehensive study of the tasks, datasets, and evaluation methodologies for Vid-LLMs. Additionally, it explores the expansive applications of Vid-LLMs across various domains, highlighting their remarkable scalability and versatility in real-world video understanding challenges. Finally, it summarizes the limitations of existing Vid-LLMs and outlines directions for future research. For more information, readers are recommended to visit the repository at https://github.com/yunlong10/Awesome-LLMs-for-Video-Understanding.
Abstract:Unsupervised Anomaly Detection (UAD) with incremental training is crucial in industrial manufacturing, as unpredictable defects make obtaining sufficient labeled data infeasible. However, continual learning methods primarily rely on supervised annotations, while the application in UAD is limited due to the absence of supervision. Current UAD methods train separate models for different classes sequentially, leading to catastrophic forgetting and a heavy computational burden. To address this issue, we introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD, which equips the UAD with continual learning capability through contrastively-learned prompts. In the proposed UCAD, we design a Continual Prompting Module (CPM) by utilizing a concise key-prompt-knowledge memory bank to guide task-invariant `anomaly' model predictions using task-specific `normal' knowledge. Moreover, Structure-based Contrastive Learning (SCL) is designed with the Segment Anything Model (SAM) to improve prompt learning and anomaly segmentation results. Specifically, by treating SAM's masks as structure, we draw features within the same mask closer and push others apart for general feature representations. We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation, demonstrating that our method is significantly better than anomaly detection methods, even with rehearsal training. The code will be available at https://github.com/shirowalker/UCAD.
Abstract:One of the ultimate goals of representation learning is to achieve compactness within a class and well-separability between classes. Many outstanding metric-based and prototype-based methods following the Expectation-Maximization paradigm, have been proposed for this objective. However, they inevitably introduce biases into the learning process, particularly with long-tail distributed training data. In this paper, we reveal that the class prototype is not necessarily to be derived from training features and propose a novel perspective to use pre-defined class anchors serving as feature centroid to unidirectionally guide feature learning. However, the pre-defined anchors may have a large semantic distance from the pixel features, which prevents them from being directly applied. To address this issue and generate feature centroid independent from feature learning, a simple yet effective Semantic Anchor Regularization (SAR) is proposed. SAR ensures the interclass separability of semantic anchors in the semantic space by employing a classifier-aware auxiliary cross-entropy loss during training via disentanglement learning. By pulling the learned features to these semantic anchors, several advantages can be attained: 1) the intra-class compactness and naturally inter-class separability, 2) induced bias or errors from feature learning can be avoided, and 3) robustness to the long-tailed problem. The proposed SAR can be used in a plug-and-play manner in the existing models. Extensive experiments demonstrate that the SAR performs better than previous sophisticated prototype-based methods. The implementation is available at https://github.com/geyanqi/SAR.
Abstract:High-precision point cloud anomaly detection is the gold standard for identifying the defects of advancing machining and precision manufacturing. Despite some methodological advances in this area, the scarcity of datasets and the lack of a systematic benchmark hinder its development. We introduce Real3D-AD, a challenging high-precision point cloud anomaly detection dataset, addressing the limitations in the field. With 1,254 high-resolution 3D items from forty thousand to millions of points for each item, Real3D-AD is the largest dataset for high-precision 3D industrial anomaly detection to date. Real3D-AD surpasses existing 3D anomaly detection datasets available regarding point cloud resolution (0.0010mm-0.0015mm), 360 degree coverage and perfect prototype. Additionally, we present a comprehensive benchmark for Real3D-AD, revealing the absence of baseline methods for high-precision point cloud anomaly detection. To address this, we propose Reg3D-AD, a registration-based 3D anomaly detection method incorporating a novel feature memory bank that preserves local and global representations. Extensive experiments on the Real3D-AD dataset highlight the effectiveness of Reg3D-AD. For reproducibility and accessibility, we provide the Real3D-AD dataset, benchmark source code, and Reg3D-AD on our website:https://github.com/M-3LAB/Real3D-AD.
Abstract:Referring video object segmentation (RVOS), as a supervised learning task, relies on sufficient annotated data for a given scene. However, in more realistic scenarios, only minimal annotations are available for a new scene, which poses significant challenges to existing RVOS methods. With this in mind, we propose a simple yet effective model with a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module builds multimodal affinity with a few samples, thus quickly learning new semantic information, and enabling the model to adapt to different scenarios. Since the proposed method targets limited samples for new scenes, we generalize the problem as - few-shot referring video object segmentation (FS-RVOS). To foster research in this direction, we build up a new FS-RVOS benchmark based on currently available datasets. The benchmark covers a wide range and includes multiple situations, which can maximally simulate real-world scenarios. Extensive experiments show that our model adapts well to different scenarios with only a few samples, reaching state-of-the-art performance on the benchmark. On Mini-Ref-YouTube-VOS, our model achieves an average performance of 53.1 J and 54.8 F, which are 10% better than the baselines. Furthermore, we show impressive results of 77.7 J and 74.8 F on Mini-Ref-SAIL-VOS, which are significantly better than the baselines. Code is publicly available at https://github.com/hengliusky/Few_shot_RVOS.
Abstract:Pre-trained vision-language models, e.g., CLIP, working with manually designed prompts have demonstrated great capacity of transfer learning. Recently, learnable prompts achieve state-of-the-art performance, which however are prone to overfit to seen classes, failing to generalize to unseen classes. In this paper, we propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models. Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects. Specifically, we design two complementary types of knowledge-aware prompts for the text encoder to leverage the distinctive characteristics of category-related external knowledge. The discrete prompt extracts the key information from descriptions of an object category, and the learned continuous prompt captures overall contexts. We further design an adaptation head for the visual encoder to aggregate salient attentive visual cues, which establishes discriminative and task-aware visual representations. We conduct extensive experiments on 11 widely-used benchmark datasets and the results verify the effectiveness in few-shot image classification, especially in generalizing to unseen categories. Compared with the state-of-the-art CoCoOp method, KAPT exhibits favorable performance and achieves an absolute gain of 3.22% on new classes and 2.57% in terms of harmonic mean.
Abstract:By integrating complementary information from RGB image and depth map, the ability of salient object detection (SOD) for complex and challenging scenes can be improved. In recent years, the important role of Convolutional Neural Networks (CNNs) in feature extraction and cross-modality interaction has been fully explored, but it is still insufficient in modeling global long-range dependencies of self-modality and cross-modality. To this end, we introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement (PICR-Net). On the one hand, considering the prior correlation between RGB modality and depth modality, an attention-triggered cross-modality point-aware interaction (CmPI) module is designed to explore the feature interaction of different modalities with positional constraints. On the other hand, in order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation. Extensive experiments on five RGB-D SOD datasets show that the proposed network achieves competitive results in both quantitative and qualitative comparisons.
Abstract:3D anomaly detection is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but most of them cannot meet the needs of IM. There are several disadvantages: i) difficult to deploy on production lines since their algorithms heavily rely on large pre-trained models; ii) hugely increase storage overhead due to overuse of memory banks; iii) the inference speed cannot be achieved in real-time. To overcome these issues, we propose an easy and deployment-friendly network (called EasyNet) without using pre-trained models and memory banks: firstly, we design a multi-scale multi-modality feature encoder-decoder to accurately reconstruct the segmentation maps of anomalous regions and encourage the interaction between RGB images and depth images; secondly, we adopt a multi-modality anomaly segmentation network to achieve a precise anomaly map; thirdly, we propose an attention-based information entropy fusion module for feature fusion during inference, making it suitable for real-time deployment. Extensive experiments show that EasyNet achieves an anomaly detection AUROC of 92.6% without using pre-trained models and memory banks. In addition, EasyNet is faster than existing methods, with a high frame rate of 94.55 FPS on a Tesla V100 GPU.
Abstract:Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-the-art cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero-shot methods. Our code is available at: https://github.com/FeiElysia/ViECap