Abstract:In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.
Abstract:Growing interest in autonomous driving (AD) and intelligent vehicles (IVs) is fueled by their promise for enhanced safety, efficiency, and economic benefits. While previous surveys have captured progress in this field, a comprehensive and forward-looking summary is needed. Our work fills this gap through three distinct articles. The first part, a "Survey of Surveys" (SoS), outlines the history, surveys, ethics, and future directions of AD and IV technologies. The second part, "Milestones in Autonomous Driving and Intelligent Vehicles Part I: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors" delves into the development of control, computing system, communication, HD map, testing, and human behaviors in IVs. This part, the third part, reviews perception and planning in the context of IVs. Aiming to provide a comprehensive overview of the latest advancements in AD and IVs, this work caters to both newcomers and seasoned researchers. By integrating the SoS and Part I, we offer unique insights and strive to serve as a bridge between past achievements and future possibilities in this dynamic field.
Abstract:Traffic simulation is a crucial tool for transportation decision-making and policy development. However, achieving realistic simulations in the face of the high dimensionality and heterogeneity of traffic environments is a longstanding challenge. In this paper, we present TransWordNG, a traffic simulator that uses Data-driven algorithms and Graph Computing techniques to learn traffic dynamics from real data. The functionality and structure of TransWorldNG are introduced, which utilize a foundation model for transportation management and control. The results demonstrate that TransWorldNG can generate more realistic traffic patterns compared to traditional simulators. Additionally, TransWorldNG exhibits better scalability, as it shows linear growth in computation time as the scenario scale increases. To the best of our knowledge, this is the first traffic simulator that can automatically learn traffic patterns from real-world data and efficiently generate accurate and realistic traffic environments.
Abstract:Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks and lack systematic summaries and research directions in the future. Our work is divided into 3 independent articles and the first part is a Survey of Surveys (SoS) for total technologies of AD and IVs that involves the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. This is the second part (Part \uppercase\expandafter{\romannumeral1} for this technical survey) to review the development of control, computing system design, communication, High Definition map (HD map), testing, and human behaviors in IVs. In addition, the third part (Part \uppercase\expandafter{\romannumeral2} for this technical survey) is to review the perception and planning sections. The objective of this paper is to involve all the sections of AD, summarize the latest technical milestones, and guide abecedarians to quickly understand the development of AD and IVs. Combining the SoS and Part \uppercase\expandafter{\romannumeral2}, we anticipate that this work will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.
Abstract:Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks, lack of systematic summary and research directions in the future. Here we propose a Survey of Surveys (SoS) for total technologies of AD and IVs that reviews the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. To our knowledge, this article is the first SoS with milestones in AD and IVs, which constitutes our complete research work together with two other technical surveys. We anticipate that this article will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.
Abstract:Pseudo supervision is regarded as the core idea in semi-supervised learning for semantic segmentation, and there is always a tradeoff between utilizing only the high-quality pseudo labels and leveraging all the pseudo labels. Addressing that, we propose a novel learning approach, called Conservative-Progressive Collaborative Learning (CPCL), among which two predictive networks are trained in parallel, and the pseudo supervision is implemented based on both the agreement and disagreement of the two predictions. One network seeks common ground via intersection supervision and is supervised by the high-quality labels to ensure a more reliable supervision, while the other network reserves differences via union supervision and is supervised by all the pseudo labels to keep exploring with curiosity. Thus, the collaboration of conservative evolution and progressive exploration can be achieved. To reduce the influences of the suspicious pseudo labels, the loss is dynamic re-weighted according to the prediction confidence. Extensive experiments demonstrate that CPCL achieves state-of-the-art performance for semi-supervised semantic segmentation.
Abstract:We propose a precise and efficient normal estimation method that can deal with noise and nonuniform density for unstructured 3D point clouds. Unlike existing approaches that directly take patches and ignore the local neighborhood relationships, which make them susceptible to challenging regions such as sharp edges, we propose to learn graph convolutional feature representation for normal estimation, which emphasizes more local neighborhood geometry and effectively encodes intrinsic relationships. Additionally, we design a novel adaptive module based on the attention mechanism to integrate point features with their neighboring features, hence further enhancing the robustness of the proposed normal estimator against point density variations. To make it more distinguishable, we introduce a multi-scale architecture in the graph block to learn richer geometric features. Our method outperforms competitors with the state-of-the-art accuracy on various benchmark datasets, and is quite robust against noise, outliers, as well as the density variations.
Abstract:Most conventional crowd counting methods utilize a fully-supervised learning framework to learn a mapping between scene images and crowd density maps. Under the circumstances of such fully-supervised training settings, a large quantity of expensive and time-consuming pixel-level annotations are required to generate density maps as the supervision. One way to reduce costly labeling is to exploit self-structural information and inner-relations among unlabeled images. Unlike the previous methods utilizing these relations and structural information from the original image level, we explore such self-relations from the latent feature spaces because it can extract more abundant relations and structural information. Specifically, we propose S$^2$FPR which can extract structural information and learn partial orders of coarse-to-fine pyramid features in the latent space for better crowd counting with massive unlabeled images. In addition, we collect a new unlabeled crowd counting dataset (FUDAN-UCC) with 4,000 images in total for training. One by-product is that our proposed S$^2$FPR method can leverage numerous partial orders in the latent space among unlabeled images to strengthen the model representation capability and reduce the estimation errors for the crowd counting task. Extensive experiments on four benchmark datasets, i.e. the UCF-QNRF, the ShanghaiTech PartA and PartB, and the UCF-CC-50, show the effectiveness of our method compared with previous semi-supervised methods. The source code and dataset are available at https://github.com/bridgeqiqi/S2FPR.
Abstract:Deep learning has become the most powerful machine learning tool in the last decade. However, how to efficiently train deep neural networks remains to be thoroughly solved. The widely used minibatch stochastic gradient descent (SGD) still needs to be accelerated. As a promising tool to better understand the learning dynamic of minibatch SGD, the information bottleneck (IB) theory claims that the optimization process consists of an initial fitting phase and the following compression phase. Based on this principle, we further study typicality sampling, an efficient data selection method, and propose a new explanation of how it helps accelerate the training process of the deep networks. We show that the fitting phase depicted in the IB theory will be boosted with a high signal-to-noise ratio of gradient approximation if the typicality sampling is appropriately adopted. Furthermore, this finding also implies that the prior information of the training set is critical to the optimization process and the better use of the most important data can help the information flow through the bottleneck faster. Both theoretical analysis and experimental results on synthetic and real-world datasets demonstrate our conclusions.
Abstract:To effectively optimize Takagi-Sugeno-Kang (TSK) fuzzy systems for regression problems, a mini-batch gradient descent with regularization, DropRule, and AdaBound (MBGD-RDA) algorithm was recently proposed. This paper further proposes FCM-RDpA, which improves MBGD-RDA by replacing the grid partition approach in rule initialization by fuzzy c-means clustering, and AdaBound by Powerball AdaBelief, which integrates recently proposed Powerball gradient and AdaBelief to further expedite and stabilize parameter optimization. Extensive experiments on 22 regression datasets with various sizes and dimensionalities validated the superiority of FCM-RDpA over MBGD-RDA, especially when the feature dimensionality is higher. We also propose an additional approach, FCM-RDpAx, that further improves FCM-RDpA by using augmented features in both the antecedents and consequents of the rules.