Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Evaluating Agents without Rewards

Dec 21, 2020
Brendon Matusch, Jimmy Ba, Danijar Hafner

* 15 pages, 6 figures, 5 tables 

  Access Paper or Ask Questions

Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual Model-Based Reinforcement Learning

Dec 08, 2020
Mohammad Babaeizadeh, Mohammad Taghi Saffar, Danijar Hafner, Harini Kannan, Chelsea Finn, Sergey Levine, Dumitru Erhan


  Access Paper or Ask Questions

Skill Transfer via Partially Amortized Hierarchical Planning

Nov 27, 2020
Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, Florian Shkurti

* First two authors contributed equally. Preprint. NeurIPS 2020 Deep RL Workshop and under review 

  Access Paper or Ask Questions

Mastering Atari with Discrete World Models

Oct 05, 2020
Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, Jimmy Ba

* 8 pages, 4 figures, 4 tables 

  Access Paper or Ask Questions

Action and Perception as Divergence Minimization

Oct 05, 2020
Danijar Hafner, Pedro A. Ortega, Jimmy Ba, Thomas Parr, Karl Friston, Nicolas Heess

* 14 pages, 10 figures, 2 tables 

  Access Paper or Ask Questions

Sophisticated Inference

Jun 07, 2020
Karl Friston, Lancelot Da Costa, Danijar Hafner, Casper Hesp, Thomas Parr


  Access Paper or Ask Questions

Planning to Explore via Self-Supervised World Models

May 12, 2020
Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, Deepak Pathak

* Videos and code at https://ramanans1.github.io/plan2explore/ 

  Access Paper or Ask Questions

Dream to Control: Learning Behaviors by Latent Imagination

Dec 03, 2019
Danijar Hafner, Timothy Lillicrap, Jimmy Ba, Mohammad Norouzi

* 9 pages, 12 figures 

  Access Paper or Ask Questions

Bayesian Layers: A Module for Neural Network Uncertainty

Dec 11, 2018
Dustin Tran, Michael W. Dusenberry, Mark van der Wilk, Danijar Hafner

* Presented in NeurIPS 2018 workshop Bayesian Deep Learning. Code available at https://github.com/tensorflow/tensor2tensor 

  Access Paper or Ask Questions

Learning Latent Dynamics for Planning from Pixels

Dec 03, 2018
Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, James Davidson

* 10 pages, 5 figures, 1 table 

  Access Paper or Ask Questions

Modulated Policy Hierarchies

Nov 30, 2018
Alexander Pashevich, Danijar Hafner, James Davidson, Rahul Sukthankar, Cordelia Schmid

* 8 pages, 5 figures 

  Access Paper or Ask Questions

TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

Oct 31, 2018
Danijar Hafner, James Davidson, Vincent Vanhoucke

* White paper, 7 pages 

  Access Paper or Ask Questions

Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors

Oct 31, 2018
Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, James Davidson

* 9 pages, 5 figures 

  Access Paper or Ask Questions

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion

Jul 04, 2018
Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee


  Access Paper or Ask Questions

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots

May 16, 2018
Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, Vincent Vanhoucke

* Accompanying video: https://www.youtube.com/watch?v=lUZUr7jxoqM 

  Access Paper or Ask Questions

Generative Interest Estimation for Document Recommendations

Nov 28, 2017
Danijar Hafner, Alexander Immer, Willi Raschkowski, Fabian Windheuser


  Access Paper or Ask Questions

Learning Hierarchical Information Flow with Recurrent Neural Modules

Nov 04, 2017
Danijar Hafner, Alex Irpan, James Davidson, Nicolas Heess

* NIPS 2017 

  Access Paper or Ask Questions

Deep Reinforcement Learning From Raw Pixels in Doom

Oct 07, 2016
Danijar Hafner

* Bachelor's thesis 

  Access Paper or Ask Questions