Abstract:Music exists in various modalities, such as score images, symbolic scores, MIDI, and audio. Translations between each modality are established as core tasks of music information retrieval, such as automatic music transcription (audio-to-MIDI) and optical music recognition (score image to symbolic score). However, most past work on multimodal translation trains specialized models on individual translation tasks. In this paper, we propose a unified approach, where we train a general-purpose model on many translation tasks simultaneously. Two key factors make this unified approach viable: a new large-scale dataset and the tokenization of each modality. Firstly, we propose a new dataset that consists of more than 1,300 hours of paired audio-score image data collected from YouTube videos, which is an order of magnitude larger than any existing music modal translation datasets. Secondly, our unified tokenization framework discretizes score images, audio, MIDI, and MusicXML into a sequence of tokens, enabling a single encoder-decoder Transformer to tackle multiple cross-modal translation as one coherent sequence-to-sequence task. Experimental results confirm that our unified multitask model improves upon single-task baselines in several key areas, notably reducing the symbol error rate for optical music recognition from 24.58% to a state-of-the-art 13.67%, while similarly substantial improvements are observed across the other translation tasks. Notably, our approach achieves the first successful score-image-conditioned audio generation, marking a significant breakthrough in cross-modal music generation.
Abstract:Leitmotifs are musical phrases that are reprised in various forms throughout a piece. Due to diverse variations and instrumentation, detecting the occurrence of leitmotifs from audio recordings is a highly challenging task. Leitmotif detection may be handled as a subcategory of audio event detection, where leitmotif activity is predicted at the frame level. However, as leitmotifs embody distinct, coherent musical structures, a more holistic approach akin to bounding box regression in visual object detection can be helpful. This method captures the entirety of a motif rather than fragmenting it into individual frames, thereby preserving its musical integrity and producing more useful predictions. We present our experimental results on tackling leitmotif detection as a boundary regression task.
Abstract:We introduce a project that revives a piece of 15th-century Korean court music, Chihwapyeong and Chwipunghyeong, composed upon the poem Songs of the Dragon Flying to Heaven. One of the earliest examples of Jeongganbo, a Korean musical notation system, the remaining version only consists of a rudimentary melody. Our research team, commissioned by the National Gugak (Korean Traditional Music) Center, aimed to transform this old melody into a performable arrangement for a six-part ensemble. Using Jeongganbo data acquired through bespoke optical music recognition, we trained a BERT-like masked language model and an encoder-decoder transformer model. We also propose an encoding scheme that strictly follows the structure of Jeongganbo and denotes note durations as positions. The resulting machine-transformed version of Chihwapyeong and Chwipunghyeong were evaluated by experts and performed by the Court Music Orchestra of National Gugak Center. Our work demonstrates that generative models can successfully be applied to traditional music with limited training data if combined with careful design.