Alert button
Picture for Danqi Chen

Danqi Chen

Alert button

Detecting Pretraining Data from Large Language Models

Nov 03, 2023
Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, Luke Zettlemoyer

Figure 1 for Detecting Pretraining Data from Large Language Models
Figure 2 for Detecting Pretraining Data from Large Language Models
Figure 3 for Detecting Pretraining Data from Large Language Models
Figure 4 for Detecting Pretraining Data from Large Language Models

Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to three real-world scenarios, copyrighted book detection, contaminated downstream example detection and privacy auditing of machine unlearning, and find it a consistently effective solution.

Viaarxiv icon

Poisoning Retrieval Corpora by Injecting Adversarial Passages

Oct 29, 2023
Zexuan Zhong, Ziqing Huang, Alexander Wettig, Danqi Chen

Dense retrievers have achieved state-of-the-art performance in various information retrieval tasks, but to what extent can they be safely deployed in real-world applications? In this work, we propose a novel attack for dense retrieval systems in which a malicious user generates a small number of adversarial passages by perturbing discrete tokens to maximize similarity with a provided set of training queries. When these adversarial passages are inserted into a large retrieval corpus, we show that this attack is highly effective in fooling these systems to retrieve them for queries that were not seen by the attacker. More surprisingly, these adversarial passages can directly generalize to out-of-domain queries and corpora with a high success attack rate -- for instance, we find that 50 generated passages optimized on Natural Questions can mislead >94% of questions posed in financial documents or online forums. We also benchmark and compare a range of state-of-the-art dense retrievers, both unsupervised and supervised. Although different systems exhibit varying levels of vulnerability, we show they can all be successfully attacked by injecting up to 500 passages, a small fraction compared to a retrieval corpus of millions of passages.

* EMNLP 2023. Our code is available at 
Viaarxiv icon

Evaluating Large Language Models at Evaluating Instruction Following

Oct 11, 2023
Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, Danqi Chen

As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these "LLM evaluators", particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.

* Under review 
Viaarxiv icon

Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation

Oct 10, 2023
Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, Danqi Chen

Figure 1 for Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
Figure 2 for Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
Figure 3 for Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
Figure 4 for Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation

The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with $30\times$ lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at

Viaarxiv icon

Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning

Oct 10, 2023
Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, Danqi Chen

The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged moderate-sized large language models (LLMs) highlights the potential of building smaller yet powerful LLMs. Regardless, the cost of training such models from scratch on trillions of tokens remains high. In this work, we study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models. Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains. We demonstrate the efficacy of our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE, and OpenLLaMA models, on a wide range of downstream and instruction tuning evaluations, while requiring only 3% of compute compared to training such models from scratch. This work provides compelling evidence that leveraging existing LLMs with structured pruning is a far more cost-effective approach for building smaller LLMs.

* The code and models are available at 
Viaarxiv icon

Learning Transformer Programs

Jun 01, 2023
Dan Friedman, Alexander Wettig, Danqi Chen

Figure 1 for Learning Transformer Programs
Figure 2 for Learning Transformer Programs
Figure 3 for Learning Transformer Programs
Figure 4 for Learning Transformer Programs

Recent research in mechanistic interpretability has attempted to reverse-engineer Transformer models by carefully inspecting network weights and activations. However, these approaches require considerable manual effort and still fall short of providing complete, faithful descriptions of the underlying algorithms. In this work, we introduce a procedure for training Transformers that are mechanistically interpretable by design. We build on RASP [Weiss et al., 2021], a programming language that can be compiled into Transformer weights. Instead of compiling human-written programs into Transformers, we design a modified Transformer that can be trained using gradient-based optimization and then be automatically converted into a discrete, human-readable program. We refer to these models as Transformer Programs. To validate our approach, we learn Transformer Programs for a variety of problems, including an in-context learning task, a suite of algorithmic problems (e.g. sorting, recognizing Dyck-languages), and NLP tasks including named entity recognition and text classification. The Transformer Programs can automatically find reasonable solutions, performing on par with standard Transformers of comparable size; and, more importantly, they are easy to interpret. To demonstrate these advantages, we convert Transformers into Python programs and use off-the-shelf code analysis tools to debug model errors and identify the ``circuits'' used to solve different sub-problems. We hope that Transformer Programs open a new path toward the goal of intrinsically interpretable machine learning.

* Our code, and example Transformer Programs, are available at 
Viaarxiv icon

Fine-Tuning Language Models with Just Forward Passes

May 27, 2023
Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, Sanjeev Arora

Figure 1 for Fine-Tuning Language Models with Just Forward Passes
Figure 2 for Fine-Tuning Language Models with Just Forward Passes
Figure 3 for Fine-Tuning Language Models with Just Forward Passes
Figure 4 for Fine-Tuning Language Models with Just Forward Passes

Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12x memory reduction; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.

* Code available at 
Viaarxiv icon

CSTS: Conditional Semantic Textual Similarity

May 24, 2023
Ameet Deshpande, Carlos E. Jimenez, Howard Chen, Vishvak Murahari, Victoria Graf, Tanmay Rajpurohit, Ashwin Kalyan, Danqi Chen, Karthik Narasimhan

Figure 1 for CSTS: Conditional Semantic Textual Similarity
Figure 2 for CSTS: Conditional Semantic Textual Similarity
Figure 3 for CSTS: Conditional Semantic Textual Similarity
Figure 4 for CSTS: Conditional Semantic Textual Similarity

Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball." (both upward) and lower for "The size of the ball." (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.

Viaarxiv icon

Privacy Implications of Retrieval-Based Language Models

May 24, 2023
Yangsibo Huang, Samyak Gupta, Zexuan Zhong, Kai Li, Danqi Chen

Figure 1 for Privacy Implications of Retrieval-Based Language Models
Figure 2 for Privacy Implications of Retrieval-Based Language Models
Figure 3 for Privacy Implications of Retrieval-Based Language Models
Figure 4 for Privacy Implications of Retrieval-Based Language Models

Retrieval-based language models (LMs) have demonstrated improved interpretability, factuality, and adaptability compared to their parametric counterparts, by incorporating retrieved text from external datastores. While it is well known that parametric models are prone to leaking private data, it remains unclear how the addition of a retrieval datastore impacts model privacy. In this work, we present the first study of privacy risks in retrieval-based LMs, particularly $k$NN-LMs. Our goal is to explore the optimal design and training procedure in domains where privacy is of concern, aiming to strike a balance between utility and privacy. Crucially, we find that $k$NN-LMs are more susceptible to leaking private information from their private datastore than parametric models. We further explore mitigations of privacy risks. When privacy information is targeted and readily detected in the text, we find that a simple sanitization step would completely eliminate the risks, while decoupling query and key encoders achieves an even better utility-privacy trade-off. Otherwise, we consider strategies of mixing public and private data in both datastore and encoder training. While these methods offer modest improvements, they leave considerable room for future work. Together, our findings provide insights for practitioners to better understand and mitigate privacy risks in retrieval-based LMs. Our code is available at: .

Viaarxiv icon