Abstract:The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Abstract:This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators, inspired by integral transform operators. GIT-NET harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases (e.g., Fourier basis). Unlike rigid integral transforms, GIT-Net parametrizes adaptive generalized integral transforms with deep neural networks. When compared to several recently proposed alternatives, GIT-Net's computational and memory requirements scale gracefully with mesh discretizations, facilitating its application to PDE problems on complex geometries. Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems. This stands in contrast to existing neural network operators, which typically excel in just one of these areas.
Abstract:In this work, we develop and release Yuan 2.0, a series of large language models with parameters ranging from 2.1 billion to 102.6 billion. The Localized Filtering-based Attention (LFA) is introduced to incorporate prior knowledge of local dependencies of natural language into Attention. A data filtering and generating system is presented to build pre-training and fine-tuning dataset in high quality. A distributed training method with non-uniform pipeline parallel, data parallel, and optimizer parallel is proposed, which greatly reduces the bandwidth requirements of intra-node communication, and achieves good performance in large-scale distributed training. Yuan 2.0 models display impressive ability in code generation, math problem-solving, and chatting compared with existing models. The latest version of YUAN 2.0, including model weights and source code, is accessible at Github.
Abstract:Visual question answering (VQA) is a fundamental and essential AI task, and VQA-based disaster scenario understanding is a hot research topic. For instance, we can ask questions about a disaster image by the VQA model and the answer can help identify whether anyone or anything is affected by the disaster. However, previous VQA models for disaster damage assessment have some shortcomings, such as limited candidate answer space, monotonous question types, and limited answering capability of existing models. In this paper, we propose a zero-shot VQA model named Zero-shot VQA for Flood Disaster Damage Assessment (ZFDDA). It is a VQA model for damage assessment without pre-training. Also, with flood disaster as the main research object, we build a Freestyle Flood Disaster Image Question Answering dataset (FFD-IQA) to evaluate our VQA model. This new dataset expands the question types to include free-form, multiple-choice, and yes-no questions. At the same time, we expand the size of the previous dataset to contain a total of 2,058 images and 22,422 question-meta ground truth pairs. Most importantly, our model uses well-designed chain of thought (CoT) demonstrations to unlock the potential of the large language model, allowing zero-shot VQA to show better performance in disaster scenarios. The experimental results show that the accuracy in answering complex questions is greatly improved with CoT prompts. Our study provides a research basis for subsequent research of VQA for other disaster scenarios.
Abstract:Our paper investigates effective methods for code generation in "specific-domain" applications, including the use of Large Language Models (LLMs) for data segmentation and renewal, as well as stimulating deeper thinking in LLMs through prompt adjustments. Using a real company product as an example, we provide user manuals, API documentation, and other data. The ideas discussed in this paper help segment and then convert this data into semantic vectors to better reflect their true positioning. Subsequently, user requirements are transformed into vectors to retrieve the most relevant content, achieving about 70% accuracy in simple to medium-complexity tasks through various prompt techniques. This paper is the first to enhance specific-domain code generation effectiveness from this perspective. Additionally, we experiment with generating more scripts from a limited number using llama2-based fine-tuning to test its effectiveness in professional domain code generation. This is a challenging and promising field, and once achieved, it will not only lead to breakthroughs in LLM development across multiple industries but also enable LLMs to understand and learn any new knowledge effectively.
Abstract:This letter investigates the challenge of channel estimation in a multiuser millimeter-wave (mmWave) time-division duplexing (TDD) system. In this system, the base station (BS) employs a multi-antenna uniform linear array (ULA), while each mobile user is equipped with a fluid antenna system (FAS). Accurate channel state information (CSI) plays a crucial role in the precise placement of antennas in FAS. Traditional channel estimation methods designed for fixed-antenna systems are inadequate due to the high dimensionality of FAS. To address this issue, we propose a low-sample-size sparse channel reconstruction (L3SCR) method, capitalizing on the sparse propagation paths characteristic of mmWave channels. In this approach, each fluid antenna only needs to switch and measure the channel at a few specific locations. By observing this reduced-dimensional data, we can effectively extract angular and gain information related to the sparse channel, enabling us to reconstruct the full CSI. Simulation results demonstrate that our proposed method allows us to obtain precise CSI with minimal hardware switching and pilot overhead. As a result, the system sum-rate approaches the upper bound achievable with perfect CSI.
Abstract:Recovering masked feedback with neural models is a popular paradigm in recommender systems. Seeing the success of diffusion models in solving ill-posed inverse problems, we introduce a conditional diffusion framework for collaborative filtering that iteratively reconstructs a user's hidden preferences guided by its historical interactions. To better align with the intrinsic characteristics of implicit feedback data, we implement forward diffusion by applying synthetic smoothing filters to interaction signals on an item-item graph. The resulting reverse diffusion can be interpreted as a personalized process that gradually refines preference scores. Through graph Fourier transform, we equivalently characterize this model as an anisotropic Gaussian diffusion in the graph spectral domain, establishing both forward and reverse formulations. Our model outperforms state-of-the-art methods by a large margin on one dataset and yields competitive results on the others.
Abstract:In recent years, transfer learning has garnered significant attention in the machine learning community. Its ability to leverage knowledge from related studies to improve generalization performance in a target study has made it highly appealing. This paper focuses on investigating the transfer learning problem within the context of nonparametric regression over a reproducing kernel Hilbert space. The aim is to bridge the gap between practical effectiveness and theoretical guarantees. We specifically consider two scenarios: one where the transferable sources are known and another where they are unknown. For the known transferable source case, we propose a two-step kernel-based estimator by solely using kernel ridge regression. For the unknown case, we develop a novel method based on an efficient aggregation algorithm, which can automatically detect and alleviate the effects of negative sources. This paper provides the statistical properties of the desired estimators and establishes the minimax optimal rate. Through extensive numerical experiments on synthetic data and real examples, we validate our theoretical findings and demonstrate the effectiveness of our proposed method.
Abstract:Data Augmentation (DA)-augmenting training data with synthetic samples-is wildly adopted in Computer Vision (CV) to improve models performance. Conversely, DA has not been yet popularized in networking use cases, including Traffic Classification (TC). In this work, we present a preliminary study of 14 hand-crafted DAs applied on the MIRAGE19 dataset. Our results (i) show that DA can reap benefits previously unexplored in TC and (ii) foster a research agenda on the use of generative models to automate DA design.
Abstract:Covariate shift occurs prevalently in practice, where the input distributions of the source and target data are substantially different. Despite its practical importance in various learning problems, most of the existing methods only focus on some specific learning tasks and are not well validated theoretically and numerically. To tackle this problem, we propose a unified analysis of general nonparametric methods in a reproducing kernel Hilbert space (RKHS) under covariate shift. Our theoretical results are established for a general loss belonging to a rich loss function family, which includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification. Two types of covariate shift problems are the focus of this paper and the sharp convergence rates are established for a general loss function to provide a unified theoretical analysis, which concurs with the optimal results in literature where the squared loss is used. Extensive numerical studies on synthetic and real examples confirm our theoretical findings and further illustrate the effectiveness of our proposed method.