Abstract:Although most existing multi-modal salient object detection (SOD) methods demonstrate effectiveness through training models from scratch, the limited multi-modal data hinders these methods from reaching optimality. In this paper, we propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the pre-trained Segment Anything Model (SAM) for multi-modal SOD. Despite serving as a recent vision fundamental model, driving the class-agnostic SAM to comprehend and detect salient objects accurately is non-trivial, especially in challenging scenes. To this end, we develop \underline{SAM} with se\underline{m}antic f\underline{e}ature fu\underline{s}ion guidanc\underline{e} (Sammese), which incorporates multi-modal saliency-specific knowledge into SAM to adapt SAM to multi-modal SOD tasks. However, it is difficult for SAM trained on single-modal data to directly mine the complementary benefits of multi-modal inputs and comprehensively utilize them to achieve accurate saliency prediction.To address these issues, we first design a multi-modal complementary fusion module to extract robust multi-modal semantic features by integrating information from visible and thermal or depth image pairs. Then, we feed the extracted multi-modal semantic features into both the SAM image encoder and mask decoder for fine-tuning and prompting, respectively. Specifically, in the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. In the mask decoder, a semantic-geometric prompt generation strategy is proposed to produce corresponding embeddings with various saliency cues. Extensive experiments on both RGB-D and RGB-T SOD benchmarks show the effectiveness of the proposed framework.
Abstract:Existing RGBT tracking methods often design various interaction models to perform cross-modal fusion of each layer, but can not execute the feature interactions among all layers, which plays a critical role in robust multimodal representation, due to large computational burden. To address this issue, this paper presents a novel All-layer multimodal Interaction Network, named AINet, which performs efficient and effective feature interactions of all modalities and layers in a progressive fusion Mamba, for robust RGBT tracking. Even though modality features in different layers are known to contain different cues, it is always challenging to build multimodal interactions in each layer due to struggling in balancing interaction capabilities and efficiency. Meanwhile, considering that the feature discrepancy between RGB and thermal modalities reflects their complementary information to some extent, we design a Difference-based Fusion Mamba (DFM) to achieve enhanced fusion of different modalities with linear complexity. When interacting with features from all layers, a huge number of token sequences (3840 tokens in this work) are involved and the computational burden is thus large. To handle this problem, we design an Order-dynamic Fusion Mamba (OFM) to execute efficient and effective feature interactions of all layers by dynamically adjusting the scan order of different layers in Mamba. Extensive experiments on four public RGBT tracking datasets show that AINet achieves leading performance against existing state-of-the-art methods.
Abstract:In long-distance fiber optic transmission, the optic fiber link and erbium-doped fiber amplifiers can introduce excessive noise, which reduces the optical signal-to-noise ratio (OSNR). The narrow-band optical filters can be used to eliminate noise and thereby improve OSNR. However, there is a relative frequency drift between the signal and the narrow-band filter, which leads to filtered signal instability. This paper proposes an adaptive OSNR recovery scheme based on a Fabry-Perot (F-P) cavity with mode width of 6 MHz. Utilizing the comb filtering of F-P cavity, the noise around the carrier and sidebands of the signal is filtered out simultaneously. To avoid frequency mismatch, we propose a double-servo scheme to suppress relative frequency drift between the signal and the F-P cavity. We constructed a stable radio frequency transfer system based on passive phase compensation and compared our scheme with other OSNR recovery schemes based on optical filters. Compared to the schemes based on dense wavelength division multiplexing (DWDM) and Waveshaper, our scheme demonstrates an improvement in OSNR of carrier by at least 12 dB and sidebands by at least 23.5 dB. The short-term transfer stability (1 s) is improved by one order of magnitude compared to DWDM and half an order of magnitude compared to Waveshper. This scheme can be applied to the recovery of signals with low OSNR in long-distance fiber optic transmission, improving signal quaility and extending the transmission distance limit.
Abstract:We present REMM, a rotation-equivariant framework for end-to-end multimodal image matching, which fully encodes rotational differences of descriptors in the whole matching pipeline. Previous learning-based methods mainly focus on extracting modal-invariant descriptors, while consistently ignoring the rotational invariance. In this paper, we demonstrate that our REMM is very useful for multimodal image matching, including multimodal feature learning module and cyclic shift module. We first learn modal-invariant features through the multimodal feature learning module. Then, we design the cyclic shift module to rotationally encode the descriptors, greatly improving the performance of rotation-equivariant matching, which makes them robust to any angle. To validate our method, we establish a comprehensive rotation and scale-matching benchmark for evaluating the anti-rotation performance of multimodal images, which contains a combination of multi-angle and multi-scale transformations from four publicly available datasets. Extensive experiments show that our method outperforms existing methods in benchmarking and generalizes well to independent datasets. Additionally, we conducted an in-depth analysis of the key components of the REMM to validate the improvements brought about by the cyclic shift module. Code and dataset at https://github.com/HanNieWHU/REMM.
Abstract:(Source) code summarization aims to automatically generate succinct natural language summaries for given code snippets. Such summaries play a significant role in promoting developers to understand and maintain code. Inspired by neural machine translation, deep learning-based code summarization techniques widely adopt an encoder-decoder framework, where the encoder transforms given code snippets into context vectors, and the decoder decodes context vectors into summaries. Recently, large-scale pre-trained models for source code are equipped with encoders capable of producing general context vectors and have achieved substantial improvements on code summarization. However, although they are usually trained mainly on code-focused tasks and can capture general code features, they still fall short in capturing specific features that need to be summarized. This paper proposes a novel approach to improve code summarization based on summary-focused tasks. Specifically, we exploit a multi-task learning paradigm to train the encoder on three summary-focused tasks to enhance its ability to learn code-summary alignment, including unidirectional language modeling (ULM), masked language modeling (MLM), and action word prediction (AWP). Unlike pre-trained models that mainly predict masked tokens in code snippets, we design ULM and MLM to predict masked words in summaries. Intuitively, predicting words based on given code snippets would help learn the code-summary alignment. Additionally, we introduce the domain-specific task AWP to enhance the ability of the encoder to learn the alignment between action words and code snippets. The extensive experiments on four datasets demonstrate that our approach, called ESALE significantly outperforms baselines in all three widely used metrics, including BLEU, METEOR, and ROUGE-L.
Abstract:MetaDesigner revolutionizes artistic typography synthesis by leveraging the strengths of Large Language Models (LLMs) to drive a design paradigm centered around user engagement. At the core of this framework lies a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively enable the creation of customized WordArt, ranging from semantic enhancements to the imposition of complex textures. MetaDesigner incorporates a comprehensive feedback mechanism that harnesses insights from multimodal models and user evaluations to refine and enhance the design process iteratively. Through this feedback loop, the system adeptly tunes hyperparameters to align with user-defined stylistic and thematic preferences, generating WordArt that not only meets but exceeds user expectations of visual appeal and contextual relevance. Empirical validations highlight MetaDesigner's capability to effectively serve diverse WordArt applications, consistently producing aesthetically appealing and context-sensitive results.
Abstract:Graph Convolutional Networks (GCNs) have been widely studied. The core of GCNs is the definition of convolution operators on graphs. However, existing Graph Convolution (GC) operators are mainly defined on adjacency matrix and node features and generally focus on obtaining effective node embeddings which cannot be utilized to address the graphs with (high-dimensional) edge features. To address this problem, by leveraging tensor contraction representation and tensor product graph diffusion theories, this paper analogously defines an effective convolution operator on graphs with edge features which is named as Tensor Product Graph Convolution (TPGC). The proposed TPGC aims to obtain effective edge embeddings. It provides a complementary model to traditional graph convolutions (GCs) to address the more general graph data analysis with both node and edge features. Experimental results on several graph learning tasks demonstrate the effectiveness of the proposed TPGC.
Abstract:The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Abstract:Multi-modal salient object detection (MSOD) aims to boost saliency detection performance by integrating visible sources with depth or thermal infrared ones. Existing methods generally design different fusion schemes to handle certain issues or challenges. Although these fusion schemes are effective at addressing specific issues or challenges, they may struggle to handle multiple complex challenges simultaneously. To solve this problem, we propose a novel adaptive fusion bank that makes full use of the complementary benefits from a set of basic fusion schemes to handle different challenges simultaneously for robust MSOD. We focus on handling five major challenges in MSOD, namely center bias, scale variation, image clutter, low illumination, and thermal crossover or depth ambiguity. The fusion bank proposed consists of five representative fusion schemes, which are specifically designed based on the characteristics of each challenge, respectively. The bank is scalable, and more fusion schemes could be incorporated into the bank for more challenges. To adaptively select the appropriate fusion scheme for multi-modal input, we introduce an adaptive ensemble module that forms the adaptive fusion bank, which is embedded into hierarchical layers for sufficient fusion of different source data. Moreover, we design an indirect interactive guidance module to accurately detect salient hollow objects via the skip integration of high-level semantic information and low-level spatial details. Extensive experiments on three RGBT datasets and seven RGBD datasets demonstrate that the proposed method achieves the outstanding performance compared to the state-of-the-art methods. The code and results are available at https://github.com/Angknpng/LAFB.
Abstract:RGB and Thermal (RGBT) Salient Object Detection (SOD) aims to achieve high-quality saliency prediction by exploiting the complementary information of visible and thermal image pairs, which are initially captured in an unaligned manner. However, existing methods are tailored for manually aligned image pairs, which are labor-intensive, and directly applying these methods to original unaligned image pairs could significantly degrade their performance. In this paper, we make the first attempt to address RGBT SOD for initially captured RGB and thermal image pairs without manual alignment. Specifically, we propose a Semantics-guided Asymmetric Correlation Network (SACNet) that consists of two novel components: 1) an asymmetric correlation module utilizing semantics-guided attention to model cross-modal correlations specific to unaligned salient regions; 2) an associated feature sampling module to sample relevant thermal features according to the corresponding RGB features for multi-modal feature integration. In addition, we construct a unified benchmark dataset called UVT2000, containing 2000 RGB and thermal image pairs directly captured from various real-world scenes without any alignment, to facilitate research on alignment-free RGBT SOD. Extensive experiments on both aligned and unaligned datasets demonstrate the effectiveness and superior performance of our method. The dataset and code are available at https://github.com/Angknpng/SACNet.