Abstract:In this paper, we propose a novel formation controller for nonholonomic agents to form general parametric curves. First, we derive a unified parametric representation for both open and closed curves. Then, a leader-follower formation controller is designed to form the parametric curves. We consider directed communications and constant input disturbances rejection in the controller design. Rigorous Lyapunov-based stability analysis proves the asymptotic stability of the proposed controller. Detailed numerical simulations and experimental studies are conducted to verify the performance of the proposed method.
Abstract:In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.
Abstract:This paper introduces the T23 team's system submitted to the Singing Voice Conversion Challenge 2023. Following the recognition-synthesis framework, our singing conversion model is based on VITS, incorporating four key modules: a prior encoder, a posterior encoder, a decoder, and a parallel bank of transposed convolutions (PBTC) module. We particularly leverage Whisper, a powerful pre-trained ASR model, to extract bottleneck features (BNF) as the input of the prior encoder. Before BNF extraction, we perform pitch perturbation to the source signal to remove speaker timbre, which effectively avoids the leakage of the source speaker timbre to the target. Moreover, the PBTC module extracts multi-scale F0 as the auxiliary input to the prior encoder, thereby capturing better pitch variations of singing. We design a three-stage training strategy to better adapt the base model to the target speaker with limited target speaker data. Official challenge results show that our system has superior performance in naturalness, ranking 1st and 2nd respectively in Task 1 and 2. Further ablation justifies the effectiveness of our system design.
Abstract:With the fast-growing and evolving omics data, the demand for streamlined and adaptable tools to handle the analysis continues to grow. In response to this need, we introduce Auto Bioinformatics Analysis (AutoBA), an autonomous AI agent based on a large language model designed explicitly for conventional omics data analysis. AutoBA simplifies the analytical process by requiring minimal user input while delivering detailed step-by-step plans for various bioinformatics tasks. Through rigorous validation by expert bioinformaticians, AutoBA's robustness and adaptability are affirmed across a diverse range of omics analysis cases, including whole genome sequencing (WGS), RNA sequencing (RNA-seq), single-cell RNA-seq, ChIP-seq, and spatial transcriptomics. AutoBA's unique capacity to self-design analysis processes based on input data variations further underscores its versatility. Compared with online bioinformatic services, AutoBA deploys the analysis locally, preserving data privacy. Moreover, different from the predefined pipeline, AutoBA has adaptability in sync with emerging bioinformatics tools. Overall, AutoBA represents a convenient tool, offering robustness and adaptability for complex omics data analysis.
Abstract:With recent advancements in natural language processing, Large Language Models (LLMs) have emerged as powerful tools for various real-world applications. Despite their prowess, the intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks which necessitate a combination of task planning and the usage of external tools. In this paper, we first propose a structured framework tailored for LLM-based AI Agents and discuss the crucial capabilities necessary for tackling intricate problems. Within this framework, we design two distinct types of agents (i.e., one-step agent and sequential agent) to execute the inference process. Subsequently, we instantiate the framework using various LLMs and evaluate their Task Planning and Tool Usage (TPTU) abilities on typical tasks. By highlighting key findings and challenges, our goal is to provide a helpful resource for researchers and practitioners to leverage the power of LLMs in their AI applications. Our study emphasizes the substantial potential of these models, while also identifying areas that need more investigation and improvement.
Abstract:Asynchronous action coordination presents a pervasive challenge in Multi-Agent Systems (MAS), which can be represented as a Stackelberg game (SG). However, the scalability of existing Multi-Agent Reinforcement Learning (MARL) methods based on SG is severely constrained by network structures or environmental limitations. To address this issue, we propose the Stackelberg Decision Transformer (STEER), a heuristic approach that resolves the difficulties of hierarchical coordination among agents. STEER efficiently manages decision-making processes in both spatial and temporal contexts by incorporating the hierarchical decision structure of SG, the modeling capability of autoregressive sequence models, and the exploratory learning methodology of MARL. Our research contributes to the development of an effective and adaptable asynchronous action coordination method that can be widely applied to various task types and environmental configurations in MAS. Experimental results demonstrate that our method can converge to Stackelberg equilibrium solutions and outperforms other existing methods in complex scenarios.
Abstract:Centralized training with decentralized execution (CTDE) is a widely-used learning paradigm that has achieved significant success in complex tasks. However, partial observability issues and the absence of effectively shared signals between agents often limit its effectiveness in fostering cooperation. While communication can address this challenge, it simultaneously reduces the algorithm's practicality. Drawing inspiration from human team cooperative learning, we propose a novel paradigm that facilitates a gradual shift from explicit communication to tacit cooperation. In the initial training stage, we promote cooperation by sharing relevant information among agents and concurrently reconstructing this information using each agent's local trajectory. We then combine the explicitly communicated information with the reconstructed information to obtain mixed information. Throughout the training process, we progressively reduce the proportion of explicitly communicated information, facilitating a seamless transition to fully decentralized execution without communication. Experimental results in various scenarios demonstrate that the performance of our method without communication can approaches or even surpasses that of QMIX and communication-based methods.
Abstract:Spatial information is essential in various fields. How to explicitly model according to the spatial location of agents is also very important for the multi-agent problem, especially when the number of agents is changing and the scale is enormous. Inspired by the point cloud task in computer vision, we propose a spatial information extraction structure for multi-agent reinforcement learning in this paper. Agents can effectively share the neighborhood and global information through a spatially encoder-decoder structure. Our method follows the centralized training with decentralized execution (CTDE) paradigm. In addition, our structure can be applied to various existing mainstream reinforcement learning algorithms with minor modifications and can deal with the problem with a variable number of agents. The experiments in several multi-agent scenarios show that the existing methods can get convincing results by adding our spatially explicit architecture.
Abstract:In multi-agent reinforcement learning (MARL), self-interested agents attempt to establish equilibrium and achieve coordination depending on game structure. However, existing MARL approaches are mostly bound by the simultaneous actions of all agents in the Markov game (MG) framework, and few works consider the formation of equilibrium strategies via asynchronous action coordination. In view of the advantages of Stackelberg equilibrium (SE) over Nash equilibrium, we construct a spatio-temporal sequential decision-making structure derived from the MG and propose an N-level policy model based on a conditional hypernetwork shared by all agents. This approach allows for asymmetric training with symmetric execution, with each agent responding optimally conditioned on the decisions made by superior agents. Agents can learn heterogeneous SE policies while still maintaining parameter sharing, which leads to reduced cost for learning and storage and enhanced scalability as the number of agents increases. Experiments demonstrate that our method effectively converges to the SE policies in repeated matrix game scenarios, and performs admirably in immensely complex settings including cooperative tasks and mixed tasks.
Abstract:Despite the good results that have been achieved in unimodal segmentation, the inherent limitations of individual data increase the difficulty of achieving breakthroughs in performance. For that reason, multi-modal learning is increasingly being explored within the field of remote sensing. The present multi-modal methods usually map high-dimensional features to low-dimensional spaces as a preprocess before feature extraction to address the nonnegligible domain gap, which inevitably leads to information loss. To address this issue, in this paper we present our novel Imbalance Knowledge-Driven Multi-modal Network (IKD-Net) to extract features from raw multi-modal heterogeneous data directly. IKD-Net is capable of mining imbalance information across modalities while utilizing a strong modal to drive the feature map refinement of the weaker ones in the global and categorical perspectives by way of two sophisticated plug-and-play modules: the Global Knowledge-Guided (GKG) and Class Knowledge-Guided (CKG) gated modules. The whole network then is optimized using a holistic loss function. While we were developing IKD-Net, we also established a new dataset called the National Agriculture Imagery Program and 3D Elevation Program Combined dataset in California (N3C-California), which provides a particular benchmark for multi-modal joint segmentation tasks. In our experiments, IKD-Net outperformed the benchmarks and state-of-the-art methods both in the N3C-California and the small-scale ISPRS Vaihingen dataset. IKD-Net has been ranked first on the real-time leaderboard for the GRSS DFC 2018 challenge evaluation until this paper's submission.