ChatGPT-like models have revolutionized various applications in artificial intelligence, from summarization and coding to translation, matching or even surpassing human performance. However, the current landscape lacks an accessible, efficient, and cost-effective end-to-end RLHF (Reinforcement Learning with Human Feedback) training pipeline for these powerful models, particularly when training at the scale of billions of parameters. This paper introduces DeepSpeed-Chat, a novel system that democratizes RLHF training, making it accessible to the AI community. DeepSpeed-Chat offers three key capabilities: an easy-to-use training and inference experience for ChatGPT-like models, a DeepSpeed-RLHF pipeline that replicates the training pipeline from InstructGPT, and a robust DeepSpeed-RLHF system that combines various optimizations for training and inference in a unified way. The system delivers unparalleled efficiency and scalability, enabling training of models with hundreds of billions of parameters in record time and at a fraction of the cost. With this development, DeepSpeed-Chat paves the way for broader access to advanced RLHF training, even for data scientists with limited resources, thereby fostering innovation and further development in the field of AI.
Recent advances on deep learning models come at the price of formidable training cost. The increasing model size is one of the root cause, but another less-emphasized fact is that data scale is actually increasing at a similar speed as model scale, and the training cost is proportional to both of them. Compared to the rapidly evolving model architecture, how to efficiently use the training data (especially for the expensive foundation model pertaining) is both less explored and difficult to realize due to the lack of a convenient framework that focus on data efficiency capabilities. To this end, we present DeepSpeed Data Efficiency library, a framework that makes better use of data, increases training efficiency, and improves model quality. Specifically, it provides efficient data sampling via curriculum learning, and efficient data routing via random layerwise token dropping. DeepSpeed Data Efficiency takes extensibility, flexibility and composability into consideration, so that users can easily utilize the framework to compose multiple techniques and apply customized strategies. By applying our solution to GPT-3 1.3B and BERT-Large language model pretraining, we can achieve similar model quality with up to 2x less data and 2x less time, or achieve better model quality under similar amount of data and time.
Large-scale transformer models have become the de-facto architectures for various machine learning applications, e.g., CV and NLP. However, those large models also introduce prohibitive training costs. To mitigate this issue, we propose a novel random and layerwise token dropping method (random-LTD), which skips the computation of a subset of the input tokens at all middle layers. Particularly, random-LTD achieves considerable speedups and comparable accuracy as the standard training baseline. Compared to other token dropping methods, random-LTD does not require (1) any importance score-based metrics, (2) any special token treatment (e.g., [CLS]), and (3) many layers in full sequence length training except the first and the last layers. Besides, a new LayerToken learning rate schedule is proposed for pretraining problems that resolve the heavy tuning requirement for our proposed training mechanism. Finally, we demonstrate that random-LTD can be applied to broader applications, including GPT and BERT pretraining as well as ViT and GPT finetuning tasks. Our results show that random-LTD can save about 33.3% theoretical compute cost and 25.6% wall-clock training time while achieving similar zero-shot evaluations on GPT-31.3B as compared to baseline.
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
How to efficiently serve ever-larger trained natural language models in practice has become exceptionally challenging even for powerful cloud servers due to their prohibitive memory/computation requirements. In this work, we present an efficient and affordable post-training quantization approach to compress large Transformer-based models, termed as ZeroQuant. ZeroQuant is an end-to-end quantization and inference pipeline with three main components: (1) a fine-grained hardware-friendly quantization scheme for both weight and activations; (2) a novel affordable layer-by-layer knowledge distillation algorithm (LKD) even without the access to the original training data; (3) a highly-optimized quantization system backend support to remove the quantization/dequantization overhead. As such, we are able to show that: (1) ZeroQuant can reduce the precision for weights and activations to INT8 in a cost-free way for both BERT and GPT3-style models with minimal accuracy impact, which leads to up to 5.19x/4.16x speedup on those models compared to FP16 inference; (2) ZeroQuant plus LKD affordably quantize the weights in the fully-connected module to INT4 along with INT8 weights in the attention module and INT8 activations, resulting in 3x memory footprint reduction compared to the FP16 model; (3) ZeroQuant can be directly applied to two of the largest open-sourced language models, including GPT-J6B and GPT-NeoX20, for which our INT8 model achieves similar accuracy as the FP16 model but achieves up to 5.2x better efficiency.
Extreme compression, particularly ultra-low bit precision (binary/ternary) quantization, has been proposed to fit large NLP models on resource-constraint devices. However, to preserve the accuracy for such aggressive compression schemes, cutting-edge methods usually introduce complicated compression pipelines, e.g., multi-stage expensive knowledge distillation with extensive hyperparameter tuning. Also, they oftentimes focus less on smaller transformer models that have already been heavily compressed via knowledge distillation and lack a systematic study to show the effectiveness of their methods. In this paper, we perform a very comprehensive systematic study to measure the impact of many key hyperparameters and training strategies from previous works. As a result, we find out that previous baselines for ultra-low bit precision quantization are significantly under-trained. Based on our study, we propose a simple yet effective compression pipeline for extreme compression, named XTC. XTC demonstrates that (1) we can skip the pre-training knowledge distillation to obtain a 5-layer BERT while achieving better performance than previous state-of-the-art methods, e.g., the 6-layer TinyBERT; (2) extreme quantization plus layer reduction is able to reduce the model size by 50x, resulting in new state-of-the-art results on GLUE tasks.
1-bit communication is an effective method to scale up model training, and has been studied extensively on SGD. Its benefits, however, remain an open question on Adam-based model training (e.g. BERT and GPT). In this paper, we propose 0/1 Adam, which improves upon the state-of-the-art 1-bit Adam via two novel designs: (1) adaptive variance state freezing, which eliminates the requirement of running expensive full-precision communication at early stage of training; (2) 1-bit sync, which allows skipping communication rounds with bit-free synchronization over Adam's optimizer states, momentum and variance. In theory, we provide convergence analysis for 0/1 Adam on smooth non-convex objectives, and show the complexity bound is better than original Adam under certain conditions. On various benchmarks such as BERT-Base/Large pretraining and ImageNet, we demonstrate on up to 128 GPUs that 0/1 Adam is able to reduce up to 90% of data volume, 54% of communication rounds, and achieve up to 2X higher throughput compared to the state-of-the-art 1-bit Adam while enjoying the same statistical convergence speed and end-to-end model accuracy on GLUE dataset and ImageNet validation set.
As the training of giant dense models hits the boundary on the availability and capability of the hardware resources today, Mixture-of-Experts (MoE) models become one of the most promising model architectures due to their significant training cost reduction compared to a quality-equivalent dense model. Its training cost saving is demonstrated from encoder-decoder models (prior works) to a 5x saving for auto-aggressive language models (this work along with parallel explorations). However, due to the much larger model size and unique architecture, how to provide fast MoE model inference remains challenging and unsolved, limiting its practical usage. To tackle this, we present DeepSpeed-MoE, an end-to-end MoE training and inference solution as part of the DeepSpeed library, including novel MoE architecture designs and model compression techniques that reduce MoE model size by up to 3.7x, and a highly optimized inference system that provides 7.3x better latency and cost compared to existing MoE inference solutions. DeepSpeed-MoE offers an unprecedented scale and efficiency to serve massive MoE models with up to 4.5x faster and 9x cheaper inference compared to quality-equivalent dense models. We hope our innovations and systems help open a promising path to new directions in the large model landscape, a shift from dense to sparse MoE models, where training and deploying higher-quality models with fewer resources becomes more widely possible.
Recent works have demonstrated great success in training high-capacity autoregressive language models (GPT, GPT-2, GPT-3) on a huge amount of unlabeled text corpus for text generation. Despite showing great results, this generates two training efficiency challenges. First, training large corpora can be extremely timing consuming, and how to present training samples to the model to improve the token-wise convergence speed remains a challenging and open question. Second, many of these large models have to be trained with hundreds or even thousands of processors using data-parallelism with a very large batch size. Despite of its better compute efficiency, it has been observed that large-batch training often runs into training instability issue or converges to solutions with bad generalization performance. To overcome these two challenges, we present a study of a curriculum learning based approach, which helps improves the pre-training convergence speed of autoregressive models. More importantly, we find that curriculum learning, as a regularization method, exerts a gradient variance reduction effect and enables to train autoregressive models with much larger batch sizes and learning rates without training instability, further improving the training speed. Our evaluations demonstrate that curriculum learning enables training GPT-2 models (with up to 1.5B parameters) with 8x larger batch size and 4x larger learning rate, whereas the baseline approach struggles with training divergence. To achieve the same validation perplexity targets during pre-training, curriculum learning reduces the required number of tokens and wall clock time by up to 59% and 54%, respectively. To achieve the same or better zero-shot WikiText-103/LAMBADA evaluation results at the end of pre-training, curriculum learning reduces the required number of tokens and wall clock time by up to 13% and 61%, respectively.
To train large models (like BERT and GPT-3) with hundreds or even thousands of GPUs, the communication has become a major bottleneck, especially on commodity systems with limited-bandwidth TCP interconnects network. On one side large-batch optimization such as LAMB algorithm was proposed to reduce the number of communications. On the other side, communication compression algorithms such as 1-bit SGD and 1-bit Adam help to reduce the volume of each communication. However, we find that simply using one of the techniques is not sufficient to solve the communication challenge, especially on low-bandwidth Ethernet networks. Motivated by this we aim to combine the power of large-batch optimization and communication compression, but we find that existing compression strategies cannot be directly applied to LAMB due to its unique adaptive layerwise learning rates. To this end, we design a new communication-efficient algorithm, 1-bit LAMB, which introduces a novel way to support adaptive layerwise learning rates even when communication is compressed. In addition, we introduce a new system implementation for compressed communication using the NCCL backend of PyTorch distributed, which improves both usability and performance compared to existing MPI-based implementation. For BERT-Large pre-training task with batch sizes from 8K to 64K, our evaluations on up to 256 GPUs demonstrate that 1-bit LAMB with NCCL-based backend is able to achieve up to 4.6x communication volume reduction, up to 2.8x end-to-end speedup (in terms of number of training samples per second), and the same convergence speed (in terms of number of pre-training samples to reach the same accuracy on fine-tuning tasks) compared to uncompressed LAMB.