Member, IEEE
Abstract:This paper presents the SZU-AFS anti-spoofing system, designed for Track 1 of the ASVspoof 5 Challenge under open conditions. The system is built with four stages: selecting a baseline model, exploring effective data augmentation (DA) methods for fine-tuning, applying a co-enhancement strategy based on gradient norm aware minimization (GAM) for secondary fine-tuning, and fusing logits scores from the two best-performing fine-tuned models. The system utilizes the Wav2Vec2 front-end feature extractor and the AASIST back-end classifier as the baseline model. During model fine-tuning, three distinct DA policies have been investigated: single-DA, random-DA, and cascade-DA. Moreover, the employed GAM-based co-enhancement strategy, designed to fine-tune the augmented model at both data and optimizer levels, helps the Adam optimizer find flatter minima, thereby boosting model generalization. Overall, the final fusion system achieves a minDCF of 0.115 and an EER of 4.04% on the evaluation set.




Abstract:Pre-training & fine-tuning can enhance the transferring efficiency and performance in visual tasks. Recent delta-tuning methods provide more options for visual classification tasks. Despite their success, existing visual delta-tuning art fails to exceed the upper limit of full fine-tuning on challenging tasks like object detection and segmentation. To find a competitive alternative to full fine-tuning, we propose the Multi-cognitive Visual Adapter (Mona) tuning, a novel adapter-based tuning method. First, we introduce multiple vision-friendly filters into the adapter to enhance its ability to process visual signals, while previous methods mainly rely on language-friendly linear filters. Second, we add the scaled normalization layer in the adapter to regulate the distribution of input features for visual filters. To fully demonstrate the practicality and generality of Mona, we conduct experiments on multiple representative visual tasks, including instance segmentation on COCO, semantic segmentation on ADE20K, object detection on Pascal VOC, oriented object detection on DOTA/STAR, and image classification on three common datasets. Exciting results illustrate that Mona surpasses full fine-tuning on all these tasks, and is the only delta-tuning method outperforming full fine-tuning on the above various tasks. For example, Mona achieves 1% performance gain on the COCO dataset compared to full fine-tuning. Comprehensive results suggest that Mona-tuning is more suitable for retaining and utilizing the capabilities of pre-trained models than full fine-tuning. We will make the code publicly available.




Abstract:Scale-aware monocular depth estimation poses a significant challenge in computer-aided endoscopic navigation. However, existing depth estimation methods that do not consider the geometric priors struggle to learn the absolute scale from training with monocular endoscopic sequences. Additionally, conventional methods face difficulties in accurately estimating details on tissue and instruments boundaries. In this paper, we tackle these problems by proposing a novel enhanced scale-aware framework that only uses monocular images with geometric modeling for depth estimation. Specifically, we first propose a multi-resolution depth fusion strategy to enhance the quality of monocular depth estimation. To recover the precise scale between relative depth and real-world values, we further calculate the 3D poses of instruments in the endoscopic scenes by algebraic geometry based on the image-only geometric primitives (i.e., boundaries and tip of instruments). Afterwards, the 3D poses of surgical instruments enable the scale recovery of relative depth maps. By coupling scale factors and relative depth estimation, the scale-aware depth of the monocular endoscopic scenes can be estimated. We evaluate the pipeline on in-house endoscopic surgery videos and simulated data. The results demonstrate that our method can learn the absolute scale with geometric modeling and accurately estimate scale-aware depth for monocular scenes.
Abstract:The task of partially spoofed audio localization aims to accurately determine audio authenticity at a frame level. Although some works have achieved encouraging results, utilizing boundary information within a single model remains an unexplored research topic. In this work, we propose a novel method called Boundary-aware Attention Mechanism (BAM). Specifically, it consists of two core modules: Boundary Enhancement and Boundary Frame-wise Attention. The former assembles the intra-frame and inter-frame information to extract discriminative boundary features that are subsequently used for boundary position detection and authenticity decision, while the latter leverages boundary prediction results to explicitly control the feature interaction between frames, which achieves effective discrimination between real and fake frames. Experimental results on PartialSpoof database demonstrate our proposed method achieves the best performance. The code is available at https://github.com/media-sec-lab/BAM.
Abstract:In recent years, the attention towards One-Shot Federated Learning (OSFL) has been driven by its capacity to minimize communication. With the development of the diffusion model (DM), several methods employ the DM for OSFL, utilizing model parameters, image features, or textual prompts as mediums to transfer the local client knowledge to the server. However, these mediums often require public datasets or the uniform feature extractor, significantly limiting their practicality. In this paper, we propose FedDEO, a Description-Enhanced One-Shot Federated Learning Method with DMs, offering a novel exploration of utilizing the DM in OSFL. The core idea of our method involves training local descriptions on the clients, serving as the medium to transfer the knowledge of the distributed clients to the server. Firstly, we train local descriptions on the client data to capture the characteristics of client distributions, which are then uploaded to the server. On the server, the descriptions are used as conditions to guide the DM in generating synthetic datasets that comply with the distributions of various clients, enabling the training of the aggregated model. Theoretical analyses and sufficient quantitation and visualization experiments on three large-scale real-world datasets demonstrate that through the training of local descriptions, the server is capable of generating synthetic datasets with high quality and diversity. Consequently, with advantages in communication and privacy protection, the aggregated model outperforms compared FL or diffusion-based OSFL methods and, on some clients, outperforms the performance ceiling of centralized training.




Abstract:Integrating deep neural networks with the Hawkes process has significantly improved predictive capabilities in finance, health informatics, and information technology. Nevertheless, these models often face challenges in real-world settings, particularly due to substantial label noise. This issue is of significant concern in the medical field, where label noise can arise from delayed updates in electronic medical records or misdiagnoses, leading to increased prediction risks. Our research indicates that deep Hawkes process models exhibit reduced robustness when dealing with label noise, particularly when it affects both event types and timing. To address these challenges, we first investigate the influence of label noise in approximated intensity functions and present a novel framework, the Robust Deep Hawkes Process (RDHP), to overcome the impact of label noise on the intensity function of Hawkes models, considering both the events and their occurrences. We tested RDHP using multiple open-source benchmarks with synthetic noise and conducted a case study on obstructive sleep apnea-hypopnea syndrome (OSAHS) in a real-world setting with inherent label noise. The results demonstrate that RDHP can effectively perform classification and regression tasks, even in the presence of noise related to events and their timing. To the best of our knowledge, this is the first study to successfully address both event and time label noise in deep Hawkes process models, offering a promising solution for medical applications, specifically in diagnosing OSAHS.
Abstract:Scene text segmentation aims at cropping texts from scene images, which is usually used to help generative models edit or remove texts. The existing text segmentation methods tend to involve various text-related supervisions for better performance. However, most of them ignore the importance of text edges, which are significant for downstream applications. In this paper, we propose Edge-Aware Transformers, termed EAFormer, to segment texts more accurately, especially at the edge of texts. Specifically, we first design a text edge extractor to detect edges and filter out edges of non-text areas. Then, we propose an edge-guided encoder to make the model focus more on text edges. Finally, an MLP-based decoder is employed to predict text masks. We have conducted extensive experiments on commonly-used benchmarks to verify the effectiveness of EAFormer. The experimental results demonstrate that the proposed method can perform better than previous methods, especially on the segmentation of text edges. Considering that the annotations of several benchmarks (e.g., COCO_TS and MLT_S) are not accurate enough to fairly evaluate our methods, we have relabeled these datasets. Through experiments, we observe that our method can achieve a higher performance improvement when more accurate annotations are used for training.
Abstract:Trajectory generation is a pivotal task in autonomous driving. Recent studies have introduced the autoregressive paradigm, leveraging the state transition model to approximate future trajectory distributions. This paradigm closely mirrors the real-world trajectory generation process and has achieved notable success. However, its potential is limited by the ineffective representation of realistic trajectories within the redundant state space. To address this limitation, we propose the Kinematic-Driven Generative Model for Realistic Agent Simulation (KiGRAS). Instead of modeling in the state space, KiGRAS factorizes the driving scene into action probability distributions at each time step, providing a compact space to represent realistic driving patterns. By establishing physical causality from actions (cause) to trajectories (effect) through the kinematic model, KiGRAS eliminates massive redundant trajectories. All states derived from actions in the cause space are constrained to be physically feasible. Furthermore, redundant trajectories representing identical action sequences are mapped to the same representation, reflecting their underlying actions. This approach significantly reduces task complexity and ensures physical feasibility. KiGRAS achieves state-of-the-art performance in Waymo's SimAgents Challenge, ranking first on the WOMD leaderboard with significantly fewer parameters than other models. The video documentation is available at \url{https://kigras-mach.github.io/KiGRAS/}.




Abstract:Prognosis and Health Management (PHM), critical for ensuring task completion by complex systems and preventing unexpected failures, is widely adopted in aerospace, manufacturing, maritime, rail, energy, etc. However, PHM's development is constrained by bottlenecks like generalization, interpretation and verification abilities. Presently, generative artificial intelligence (AI), represented by Large Model, heralds a technological revolution with the potential to fundamentally reshape traditional technological fields and human production methods. Its capabilities, including strong generalization, reasoning, and generative attributes, present opportunities to address PHM's bottlenecks. To this end, based on a systematic analysis of the current challenges and bottlenecks in PHM, as well as the research status and advantages of Large Model, we propose a novel concept and three progressive paradigms of Prognosis and Health Management Large Model (PHM-LM) through the integration of the Large Model with PHM. Subsequently, we provide feasible technical approaches for PHM-LM to bolster PHM's core capabilities within the framework of the three paradigms. Moreover, to address core issues confronting PHM, we discuss a series of technical challenges of PHM-LM throughout the entire process of construction and application. This comprehensive effort offers a holistic PHM-LM technical framework, and provides avenues for new PHM technologies, methodologies, tools, platforms and applications, which also potentially innovates design, research & development, verification and application mode of PHM. And furthermore, a new generation of PHM with AI will also capably be realized, i.e., from custom to generalized, from discriminative to generative, and from theoretical conditions to practical applications.
Abstract:Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets. We first find a rapid degradation of detection accuracy when models are directly trained on combined datasets due to the discrepancy across collection scenarios and generation methods. To address the above issue, a Generalized Multi-Scenario Deepfake Detection framework (GM-DF) is proposed to serve multiple real-world scenarios by a unified model. First, we propose a hybrid expert modeling approach for domain-specific real/forgery feature extraction. Besides, as for the commonality representation, we use CLIP to extract the common features for better aligning visual and textual features across domains. Meanwhile, we introduce a masked image reconstruction mechanism to force models to capture rich forged details. Finally, we supervise the models via a domain-aware meta-learning strategy to further enhance their generalization capacities. Specifically, we design a novel domain alignment loss to strongly align the distributions of the meta-test domains and meta-train domains. Thus, the updated models are able to represent both specific and common real/forgery features across multiple datasets. In consideration of the lack of study of multi-dataset training, we establish a new benchmark leveraging multi-source data to fairly evaluate the models' generalization capacity on unseen scenarios. Both qualitative and quantitative experiments on five datasets conducted on traditional protocols as well as the proposed benchmark demonstrate the effectiveness of our approach.