Abstract:Manual tissue extraction from potato tubers for molecular pathogen detection is highly laborious. This study presents a machine-vision-guided, dual-arm coordinated inline robotic system integrating tuber grasping and tissue sampling mechanisms. Tubers are transported on a conveyor that halts when a YOLOv11-based vision system detects a tuber within the workspace of a one-prismatic-degree-of-freedom (P-DoF) robotic arm. This arm, equipped with a gripping end-effector, secures and positions the tuber for sampling. The second arm, a 3-P-DoF Cartesian manipulator with a biopsy punch-based end-effector, then performs tissue extraction guided by a YOLOv10-based vision system that identifies the sampling sites on the tuber such as eyes or stolon scars. The sampling involves four stages: insertion of the punch into the tuber, punch rotation for tissue detachment, biopsy punch retraction, and deposition of the tissue core onto a collection site. The system achieved an average positional error of 1.84 mm along the tuber surface and a depth deviation of 1.79 mm from a 7.00 mm target. The success rate for core extraction and deposition was 81.5%, with an average sampling cycle of 10.4 seconds. The total cost of the system components was under $1,900, demonstrating the system's potential as a cost-effective alternative to labor-intensive manual tissue sampling. Future work will focus on optimizing for multi-site sampling from a single tuber and validation in commercial settings.
Abstract:This study explored the application of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis to rapidly assess soil fertility, focusing on critical parameters such as available B, organic carbon (OC), available Mn, available S, and the sulfur availability index (SAI). Analyzing 1,133 soil samples from various agro-climatic zones in Eastern India, the research combined color and texture features from microscopic soil images, PXRF data, and auxiliary soil variables (AVs) using a Random Forest model. Results indicated that integrating image features (IFs) with auxiliary variables (AVs) significantly enhanced prediction accuracy for available B (R^2 = 0.80) and OC (R^2 = 0.88). A data fusion approach, incorporating IFs, AVs, and PXRF data, further improved predictions for available Mn and SAI with R^2 values of 0.72 and 0.70, respectively. The study demonstrated how these integrated technologies have the potential to provide quick and affordable options for soil testing, opening up access to more sophisticated prediction models and a better comprehension of the fertility and health of the soil. Future research should focus on the application of deep learning models on a larger dataset of soil images, developed using soils from a broader range of agro-climatic zones under field condition.