University of Cambridge, The Alan Turing Institute
Abstract:Cautious predictions -- where a machine learning model abstains when uncertain -- are crucial for limiting harmful errors in safety-critical applications. In this work, we identify a novel threat: a dishonest institution can exploit these mechanisms to discriminate or unjustly deny services under the guise of uncertainty. We demonstrate the practicality of this threat by introducing an uncertainty-inducing attack called Mirage, which deliberately reduces confidence in targeted input regions, thereby covertly disadvantaging specific individuals. At the same time, Mirage maintains high predictive performance across all data points. To counter this threat, we propose Confidential Guardian, a framework that analyzes calibration metrics on a reference dataset to detect artificially suppressed confidence. Additionally, it employs zero-knowledge proofs of verified inference to ensure that reported confidence scores genuinely originate from the deployed model. This prevents the provider from fabricating arbitrary model confidence values while protecting the model's proprietary details. Our results confirm that Confidential Guardian effectively prevents the misuse of cautious predictions, providing verifiable assurances that abstention reflects genuine model uncertainty rather than malicious intent.
Abstract:Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically, $L_2$-distance and linear mode connectivity between the original and the unlearned model. Leveraging this insight, we propose a new class of methods that achieve state-of-the-art resistance to relearning attacks.
Abstract:Artificial Intelligence (AI) systems have historically been used as tools that execute narrowly defined tasks. Yet recent advances in AI have unlocked possibilities for a new class of models that genuinely collaborate with humans in complex reasoning, from conceptualizing problems to brainstorming solutions. Such AI thought partners enable novel forms of collaboration and extended cognition, yet they also pose major risks-including and beyond risks of typical AI tools and agents. In this commentary, we systematically identify risks of AI thought partners through a novel framework that identifies risks at multiple levels of analysis, including Real-time, Individual, and Societal risks arising from collaborative cognition (RISc). We leverage this framework to propose concrete metrics for risk evaluation, and finally suggest specific mitigation strategies for developers and policymakers. As AI thought partners continue to proliferate, these strategies can help prevent major harms and ensure that humans actively benefit from productive thought partnerships.
Abstract:Learning how the world works is central to building AI agents that can adapt to complex environments. Traditional world models based on deep learning demand vast amounts of training data, and do not flexibly update their knowledge from sparse observations. Recent advances in program synthesis using Large Language Models (LLMs) give an alternate approach which learns world models represented as source code, supporting strong generalization from little data. To date, application of program-structured world models remains limited to natural language and grid-world domains. We introduce a novel program synthesis method for effectively modeling complex, non-gridworld domains by representing a world model as an exponentially-weighted product of programmatic experts (PoE-World) synthesized by LLMs. We show that this approach can learn complex, stochastic world models from just a few observations. We evaluate the learned world models by embedding them in a model-based planning agent, demonstrating efficient performance and generalization to unseen levels on Atari's Pong and Montezuma's Revenge. We release our code and display the learned world models and videos of the agent's gameplay at https://topwasu.github.io/poe-world.
Abstract:Strategies for orchestrating the interactions between multiple agents, both human and artificial, can wildly overestimate performance and underestimate the cost of orchestration. We design a framework to orchestrate agents under realistic conditions, such as inference costs or availability constraints. We show theoretically that orchestration is only effective if there are performance or cost differentials between agents. We then empirically demonstrate how orchestration between multiple agents can be helpful for selecting agents in a simulated environment, picking a learning strategy in the infamous Rogers' Paradox from social science, and outsourcing tasks to other agents during a question-answer task in a user study.
Abstract:Recent benchmark studies have claimed that AI has approached or even surpassed human-level performances on various cognitive tasks. However, this position paper argues that current AI evaluation paradigms are insufficient for assessing human-like cognitive capabilities. We identify a set of key shortcomings: a lack of human-validated labels, inadequate representation of human response variability and uncertainty, and reliance on simplified and ecologically-invalid tasks. We support our claims by conducting a human evaluation study on ten existing AI benchmarks, suggesting significant biases and flaws in task and label designs. To address these limitations, we propose five concrete recommendations for developing future benchmarks that will enable more rigorous and meaningful evaluations of human-like cognitive capacities in AI with various implications for such AI applications.
Abstract:The suite of datasets commonly used to train and evaluate the mathematical capabilities of AI-based mathematical copilots (primarily large language models) exhibit several shortcomings. These limitations include a restricted scope of mathematical complexity, typically not exceeding lower undergraduate-level mathematics, binary rating protocols and other issues, which makes comprehensive proof-based evaluation suites difficult. We systematically explore these limitations and contend that enhancing the capabilities of large language models, or any forthcoming advancements in AI-based mathematical assistants (copilots or "thought partners"), necessitates a paradigm shift in the design of mathematical datasets and the evaluation criteria of mathematical ability: It is necessary to move away from result-based datasets (theorem statement to theorem proof) and convert the rich facets of mathematical research practice to data LLMs can train on. Examples of these are mathematical workflows (sequences of atomic, potentially subfield-dependent tasks that are often performed when creating new mathematics), which are an important part of the proof-discovery process. Additionally, we advocate for mathematical dataset developers to consider the concept of "motivated proof", introduced by G. P\'olya in 1949, which can serve as a blueprint for datasets that offer a better proof learning signal, alleviating some of the mentioned limitations. Lastly, we introduce math datasheets for datasets, extending the general, dataset-agnostic variants of datasheets: We provide a questionnaire designed specifically for math datasets that we urge dataset creators to include with their datasets. This will make creators aware of potential limitations of their datasets while at the same time making it easy for readers to assess it from the point of view of training and evaluating mathematical copilots.
Abstract:Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
Abstract:With the capability to write convincing and fluent natural language and generate code, Foundation Models present dual-use concerns broadly and within the cyber domain specifically. Generative AI has already begun to impact cyberspace through a broad illicit marketplace for assisting malware development and social engineering attacks through hundreds of malicious-AI-as-a-services tools. More alarming is that recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations. However, these previous investigations primarily focused on the threats posed by proprietary models due to the until recent lack of strong open-weight model and additionally leave the impacts of network defenses or potential countermeasures unexplored. Critically, understanding the aptitude of downloadable models to function as offensive cyber agents is vital given that they are far more difficult to govern and prevent their misuse. As such, this work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks. Using target machines from a commercial provider, the most recently released downloadable models are found to be on par with a leading proprietary model at conducting simple cyber attacks with common hacking tools against known vulnerabilities. To mitigate such LLM-powered threats, defensive prompt injection (DPI) payloads for disrupting the malicious cyber agent's workflow are demonstrated to be effective. From these results, the implications for AI safety and governance with respect to cybersecurity is analyzed.
Abstract:Active Learning aims to minimize annotation effort by selecting the most useful instances from a pool of unlabeled data. However, typical active learning methods overlook the presence of distinct example groups within a class, whose prevalence may vary, e.g., in occupation classification datasets certain demographics are disproportionately represented in specific classes. This oversight causes models to rely on shortcuts for predictions, i.e., spurious correlations between input attributes and labels occurring in well-represented groups. To address this issue, we propose Active Learning Via INterpolation (ALVIN), which conducts intra-class interpolations between examples from under-represented and well-represented groups to create anchors, i.e., artificial points situated between the example groups in the representation space. By selecting instances close to the anchors for annotation, ALVIN identifies informative examples exposing the model to regions of the representation space that counteract the influence of shortcuts. Crucially, since the model considers these examples to be of high certainty, they are likely to be ignored by typical active learning methods. Experimental results on six datasets encompassing sentiment analysis, natural language inference, and paraphrase detection demonstrate that ALVIN outperforms state-of-the-art active learning methods in both in-distribution and out-of-distribution generalization.