Online speech recognition, where the model only accesses context to the left, is an important and challenging use case for ASR systems. In this work, we investigate augmenting neural encoders for online ASR by incorporating structured state-space sequence models (S4), which are a family of models that provide a parameter-efficient way of accessing arbitrarily long left context. We perform systematic ablation studies to compare variants of S4 models and propose two novel approaches that combine them with convolutions. We find that the most effective design is to stack a small S4 using real-valued recurrent weights with a local convolution, allowing them to work complementarily. Our best model achieves WERs of 4.01%/8.53% on test sets from Librispeech, outperforming Conformers with extensively tuned convolution.
We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control to boost generalization and enable emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to both learn to map robot observations to actions and enjoy the benefits of large-scale pretraining on language and vision-language data from the web. To this end, we propose to co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks, such as visual question answering. In contrast to other approaches, we propose a simple, general recipe to achieve this goal: in order to fit both natural language responses and robotic actions into the same format, we express the actions as text tokens and incorporate them directly into the training set of the model in the same way as natural language tokens. We refer to such category of models as vision-language-action models (VLA) and instantiate an example of such a model, which we call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training. This includes significantly improved generalization to novel objects, the ability to interpret commands not present in the robot training data (such as placing an object onto a particular number or icon), and the ability to perform rudimentary reasoning in response to user commands (such as picking up the smallest or largest object, or the one closest to another object). We further show that incorporating chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for example figuring out which object to pick up for use as an improvised hammer (a rock), or which type of drink is best suited for someone who is tired (an energy drink).
We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing "classical" and "learning-based" techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching
We present a novel mechanism to improve the accuracy of the recently-introduced class of graph random features (GRFs). Our method induces negative correlations between the lengths of the algorithm's random walks by imposing antithetic termination: a procedure to sample more diverse random walks which may be of independent interest. It has a trivial drop-in implementation. We derive strong theoretical guarantees on the properties of these quasi-Monte Carlo GRFs (q-GRFs), proving that they yield lower-variance estimators of the 2-regularised Laplacian kernel under mild conditions. Remarkably, our results hold for any graph topology. We demonstrate empirical accuracy improvements on a variety of tasks including a new practical application: time-efficient approximation of the graph diffusion process. To our knowledge, q-GRFs constitute the first rigorously studied quasi-Monte Carlo scheme for kernels defined on combinatorial objects, inviting new research on correlations between graph random walks.
We introduce in this paper the mechanism of graph random features (GRFs). GRFs can be used to construct unbiased randomized estimators of several important kernels defined on graphs' nodes, in particular the regularized Laplacian kernel. As regular RFs for non-graph kernels, they provide means to scale up kernel methods defined on graphs to larger networks. Importantly, they give substantial computational gains also for smaller graphs, while applied in downstream applications. Consequently, GRFs address the notoriously difficult problem of cubic (in the number of the nodes of the graph) time complexity of graph kernels algorithms. We provide a detailed theoretical analysis of GRFs and an extensive empirical evaluation: from speed tests, through Frobenius relative error analysis to kmeans graph-clustering with graph kernels. We show that the computation of GRFs admits an embarrassingly simple distributed algorithm that can be applied if the graph under consideration needs to be split across several machines. We also introduce a (still unbiased) quasi Monte Carlo variant of GRFs, q-GRFs, relying on the so-called reinforced random walks, that might be used to optimize the variance of GRFs. As a byproduct, we obtain a novel approach to solve certain classes of linear equations with positive and symmetric matrices.
Conformer models maintain a large number of internal states, the vast majority of which are associated with self-attention layers. With limited memory bandwidth, reading these from memory at each inference step can slow down inference. In this paper, we design an optimized conformer that is small enough to meet on-device restrictions and has fast inference on TPUs. We explore various ideas to improve the execution speed, including replacing lower conformer blocks with convolution-only blocks, strategically downsizing the architecture, and utilizing an RNNAttention-Performer. Our optimized conformer can be readily incorporated into a cascaded-encoder setting, allowing a second-pass decoder to operate on its output and improve the accuracy whenever more resources are available. Altogether, we find that these optimizations can reduce latency by a factor of 6.8x, and come at a reasonable trade-off in quality. With the cascaded second-pass, we show that the recognition accuracy is completely recoverable. Thus, our proposed encoder can double as a strong standalone encoder in on device, and as the first part of a high-performance ASR pipeline.
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds. The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g., shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (particularly for mesh-dynamics modeling), Wasserstein distance computations for point clouds, and the Gromov-Wasserstein variant.
The problem of efficient approximation of a linear operator induced by the Gaussian or softmax kernel is often addressed using random features (RFs) which yield an unbiased approximation of the operator's result. Such operators emerge in important applications ranging from kernel methods to efficient Transformers. We propose parameterized, positive, non-trigonometric RFs which approximate Gaussian and softmax-kernels. In contrast to traditional RF approximations, parameters of these new methods can be optimized to reduce the variance of the approximation, and the optimum can be expressed in closed form. We show that our methods lead to variance reduction in practice ($e^{10}$-times smaller variance and beyond) and outperform previous methods in a kernel regression task. Using our proposed mechanism, we also present FAVOR#, a method for self-attention approximation in Transformers. We show that FAVOR# outperforms other random feature methods in speech modelling and natural language processing.