Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Nazanin Mohammadi Sepahvand, Vincent Dumoulin, Eleni Triantafillou, Gintare Karolina Dziugaite

As deep learning models are becoming larger and data-hungrier, there are growing ethical, legal and technical concerns over use of data: in practice, agreements on data use may change over time, rendering previously-used training data impermissible for training purposes. These issues have driven increased attention to machine unlearning: removing "the influence of" a subset of training data from a trained model. In this work, we advocate for a relaxed definition of unlearning that does not address privacy applications but targets a scenario where a data owner withdraws permission of use of their data for training purposes. In this context, we consider the important problem of \emph{transfer unlearning} where a pretrained model is transferred to a target dataset that contains some "non-static" data that may need to be unlearned in the future. We propose a new method that uses a mechanism for selecting relevant examples from an auxiliary "static" dataset, and finetunes on the selected data instead of "non-static" target data; addressing all unlearning requests ahead of time. We also adapt a recent relaxed definition of unlearning to our problem setting and demonstrate that our approach is an exact transfer unlearner according to it, while being highly efficient (amortized). We find that our method outperforms the gold standard "exact unlearning" (finetuning on only the "static" portion of the target dataset) on several datasets, especially for small "static" sets, sometimes approaching an upper bound for test accuracy. We also analyze factors influencing the accuracy boost obtained by data selection.

Via

Riyasat Ohib, Bishal Thapaliya, Gintare Karolina Dziugaite, Jingyu Liu, Vince Calhoun, Sergey Plis

In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are communicated each round between the clients and the server. We validate SSFL's effectiveness using standard non-IID benchmarks, noting marked improvements in the sparsity--accuracy trade-offs. Finally, we deploy our method in a real-world federated learning framework and report improvement in communication time.

Via

Ekansh Sharma, Devin Kwok, Tom Denton, Daniel M. Roy, David Rolnick, Gintare Karolina Dziugaite

Neural networks typically exhibit permutation symmetries which contribute to the non-convexity of the networks' loss landscapes, since linearly interpolating between two permuted versions of a trained network tends to encounter a high loss barrier. Recent work has argued that permutation symmetries are the only sources of non-convexity, meaning there are essentially no such barriers between trained networks if they are permuted appropriately. In this work, we refine these arguments into three distinct claims of increasing strength. We show that existing evidence only supports "weak linear connectivity"-that for each pair of networks belonging to a set of SGD solutions, there exist (multiple) permutations that linearly connect it with the other networks. In contrast, the claim "strong linear connectivity"-that for each network, there exists one permutation that simultaneously connects it with the other networks-is both intuitively and practically more desirable. This stronger claim would imply that the loss landscape is convex after accounting for permutation, and enable linear interpolation between three or more independently trained models without increased loss. In this work, we introduce an intermediate claim-that for certain sequences of networks, there exists one permutation that simultaneously aligns matching pairs of networks from these sequences. Specifically, we discover that a single permutation aligns sequences of iteratively trained as well as iteratively pruned networks, meaning that two networks exhibit low loss barriers at each step of their optimization and sparsification trajectories respectively. Finally, we provide the first evidence that strong linear connectivity may be possible under certain conditions, by showing that barriers decrease with increasing network width when interpolating among three networks.

Via

Tejas Kasetty, Divyat Mahajan, Gintare Karolina Dziugaite, Alexandre Drouin, Dhanya Sridhar

Numerous decision-making tasks require estimating causal effects under interventions on different parts of a system. As practitioners consider using large language models (LLMs) to automate decisions, studying their causal reasoning capabilities becomes crucial. A recent line of work evaluates LLMs ability to retrieve commonsense causal facts, but these evaluations do not sufficiently assess how LLMs reason about interventions. Motivated by the role that interventions play in causal inference, in this paper, we conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention. We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning. These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts. Our analysis on four LLMs highlights that while GPT- 4 models show promising accuracy at predicting the intervention effects, they remain sensitive to distracting factors in the prompts.

Via

Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, Daniel M. Roy

In this work, we investigate the interplay between memorization and learning in the context of \emph{stochastic convex optimization} (SCO). We define memorization via the information a learning algorithm reveals about its training data points. We then quantify this information using the framework of conditional mutual information (CMI) proposed by Steinke and Zakynthinou (2020). Our main result is a precise characterization of the tradeoff between the accuracy of a learning algorithm and its CMI, answering an open question posed by Livni (2023). We show that, in the $L^2$ Lipschitz--bounded setting and under strong convexity, every learner with an excess error $\varepsilon$ has CMI bounded below by $\Omega(1/\varepsilon^2)$ and $\Omega(1/\varepsilon)$, respectively. We further demonstrate the essential role of memorization in learning problems in SCO by designing an adversary capable of accurately identifying a significant fraction of the training samples in specific SCO problems. Finally, we enumerate several implications of our results, such as a limitation of generalization bounds based on CMI and the incompressibility of samples in SCO problems.

Via

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster, Gintare Karolina Dziugaite, Doina Precup, Pablo Samuel Castro

The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance scales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.

Via

Devin Kwok, Nikhil Anand, Jonathan Frankle, Gintare Karolina Dziugaite, David Rolnick

Motivated by the goals of dataset pruning and defect identification, a growing body of methods have been developed to score individual examples within a dataset. These methods, which we call "example difficulty scores", are typically used to rank or categorize examples, but the consistency of rankings between different training runs, scoring methods, and model architectures is generally unknown. To determine how example rankings vary due to these random and controlled effects, we systematically compare different formulations of scores over a range of runs and model architectures. We find that scores largely share the following traits: they are noisy over individual runs of a model, strongly correlated with a single notion of difficulty, and reveal examples that range from being highly sensitive to insensitive to the inductive biases of certain model architectures. Drawing from statistical genetics, we develop a simple method for fingerprinting model architectures using a few sensitive examples. These findings guide practitioners in maximizing the consistency of their scores (e.g. by choosing appropriate scoring methods, number of runs, and subsets of examples), and establishes comprehensive baselines for evaluating scores in the future.

Via

Nikita Dhawan, Nicole Mitchell, Zachary Charles, Zachary Garrett, Gintare Karolina Dziugaite

The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model, without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.

Via

Tian Jin, Nolan Clement, Xin Dong, Vaishnavh Nagarajan, Michael Carbin, Jonathan Ragan-Kelley, Gintare Karolina Dziugaite

How does scaling the number of parameters in large language models (LLMs) affect their core capabilities? We study two natural scaling techniques -- weight pruning and simply training a smaller or larger model, which we refer to as dense scaling -- and their effects on two core capabilities of LLMs: (a) recalling facts presented during pre-training and (b) processing information presented in-context during inference. By curating a suite of tasks that help disentangle these two capabilities, we find a striking difference in how these two abilities evolve due to scaling. Reducing the model size by more than 30\% (via either scaling approach) significantly decreases the ability to recall facts seen in pre-training. Yet, a 60--70\% reduction largely preserves the various ways the model can process in-context information, ranging from retrieving answers from a long context to learning parameterized functions from in-context exemplars. The fact that both dense scaling and weight pruning exhibit this behavior suggests that scaling model size has an inherently disparate effect on fact recall and in-context learning.

Via

Yu Yang, Eric Gan, Gintare Karolina Dziugaite, Baharan Mirzasoleiman

Neural networks trained with (stochastic) gradient descent have an inductive bias towards learning simpler solutions. This makes them highly prone to learning simple spurious features that are highly correlated with a label instead of the predictive but more complex core features. In this work, we show that, interestingly, the simplicity bias of gradient descent can be leveraged to identify spurious correlations, early in training. First, we prove on a two-layer neural network, that groups of examples with high spurious correlation are separable based on the model's output, in the initial training iterations. We further show that if spurious features have a small enough noise-to-signal ratio, the network's output on the majority of examples in a class will be almost exclusively determined by the spurious features and will be nearly invariant to the core feature. Finally, we propose SPARE, which separates large groups with spurious correlations early in training, and utilizes importance sampling to alleviate the spurious correlation, by balancing the group sizes. We show that SPARE achieves up to 5.6% higher worst-group accuracy than state-of-the-art methods, while being up to 12x faster. We also show the applicability of SPARE to discover and mitigate spurious correlations in Restricted ImageNet.

Via