Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Enhancement and Recognition of Reverberant and Noisy Speech by Extending Its Coherence

Sep 02, 2015
Scott Wisdom, Thomas Powers, Les Atlas, James Pitton

Most speech enhancement algorithms make use of the short-time Fourier transform (STFT), which is a simple and flexible time-frequency decomposition that estimates the short-time spectrum of a signal. However, the duration of short STFT frames are inherently limited by the nonstationarity of speech signals. The main contribution of this paper is a demonstration of speech enhancement and automatic speech recognition in the presence of reverberation and noise by extending the length of analysis windows. We accomplish this extension by performing enhancement in the short-time fan-chirp transform (STFChT) domain, an overcomplete time-frequency representation that is coherent with speech signals over longer analysis window durations than the STFT. This extended coherence is gained by using a linear model of fundamental frequency variation of voiced speech signals. Our approach centers around using a single-channel minimum mean-square error log-spectral amplitude (MMSE-LSA) estimator proposed by Habets, which scales coefficients in a time-frequency domain to suppress noise and reverberation. In the case of multiple microphones, we preprocess the data with either a minimum variance distortionless response (MVDR) beamformer, or a delay-and-sum beamformer (DSB). We evaluate our algorithm on both speech enhancement and recognition tasks for the REVERB challenge dataset. Compared to the same processing done in the STFT domain, our approach achieves significant improvement in terms of objective enhancement metrics (including PESQ---the ITU-T standard measurement for speech quality). In terms of automatic speech recognition (ASR) performance as measured by word error rate (WER), our experiments indicate that the STFT with a long window is more effective for ASR.

* 22 pages 
Access Paper or Ask Questions

Brazilian Portuguese Speech Recognition Using Wav2vec 2.0

Jul 23, 2021
Lucas Rafael Stefanel Gris, Edresson Casanova, Frederico Santos de Oliveira, Anderson da Silva Soares, Arnaldo Candido Junior

Deep learning techniques have been shown to be efficient in various tasks, especially in the development of speech recognition systems, that is, systems that aim to transcribe a sentence in audio in a sequence of words. Despite the progress in the area, speech recognition can still be considered difficult, especially for languages lacking available data, as Brazilian Portuguese. In this sense, this work presents the development of an public Automatic Speech Recognition system using only open available audio data, from the fine-tuning of the Wav2vec 2.0 XLSR-53 model pre-trained in many languages over Brazilian Portuguese data. The final model presents a Word Error Rate of 11.95% (Common Voice Dataset). This corresponds to 13% less than the best open Automatic Speech Recognition model for Brazilian Portuguese available according to our best knowledge, which is a promising result for the language. In general, this work validates the use of self-supervising learning techniques, in special, the use of the Wav2vec 2.0 architecture in the development of robust systems, even for languages having few available data.

Access Paper or Ask Questions

Learning Transferable Features for Speech Emotion Recognition

Dec 23, 2019
Alison Marczewski, Adriano Veloso, Nívio Ziviani

Emotion recognition from speech is one of the key steps towards emotional intelligence in advanced human-machine interaction. Identifying emotions in human speech requires learning features that are robust and discriminative across diverse domains that differ in terms of language, spontaneity of speech, recording conditions, and types of emotions. This corresponds to a learning scenario in which the joint distributions of features and labels may change substantially across domains. In this paper, we propose a deep architecture that jointly exploits a convolutional network for extracting domain-shared features and a long short-term memory network for classifying emotions using domain-specific features. We use transferable features to enable model adaptation from multiple source domains, given the sparseness of speech emotion data and the fact that target domains are short of labeled data. A comprehensive cross-corpora experiment with diverse speech emotion domains reveals that transferable features provide gains ranging from 4.3% to 18.4% in speech emotion recognition. We evaluate several domain adaptation approaches, and we perform an ablation study to understand which source domains add the most to the overall recognition effectiveness for a given target domain.

* Proceedings of the on Thematic Workshops of ACM Multimedia 2017. ACM, 2017. Pages 529-536 
* ACM-MM'17, October 23-27, 2017 
Access Paper or Ask Questions

Learning linearly separable features for speech recognition using convolutional neural networks

Apr 16, 2015
Dimitri Palaz, Mathew Magimai Doss, Ronan Collobert

Automatic speech recognition systems usually rely on spectral-based features, such as MFCC of PLP. These features are extracted based on prior knowledge such as, speech perception or/and speech production. Recently, convolutional neural networks have been shown to be able to estimate phoneme conditional probabilities in a completely data-driven manner, i.e. using directly temporal raw speech signal as input. This system was shown to yield similar or better performance than HMM/ANN based system on phoneme recognition task and on large scale continuous speech recognition task, using less parameters. Motivated by these studies, we investigate the use of simple linear classifier in the CNN-based framework. Thus, the network learns linearly separable features from raw speech. We show that such system yields similar or better performance than MLP based system using cepstral-based features as input.

* Final version for ICLR 2015 Workshop; Revisions according to reviews. Revised Section 4.5. Add references and correct typos. Submitted for ICLR 2015 conference track 
Access Paper or Ask Questions

Streaming Multi-talker Speech Recognition with Joint Speaker Identification

Apr 05, 2021
Liang Lu, Naoyuki Kanda, Jinyu Li, Yifan Gong

In multi-talker scenarios such as meetings and conversations, speech processing systems are usually required to transcribe the audio as well as identify the speakers for downstream applications. Since overlapped speech is common in this case, conventional approaches usually address this problem in a cascaded fashion that involves speech separation, speech recognition and speaker identification that are trained independently. In this paper, we propose Streaming Unmixing, Recognition and Identification Transducer (SURIT) -- a new framework that deals with this problem in an end-to-end streaming fashion. SURIT employs the recurrent neural network transducer (RNN-T) as the backbone for both speech recognition and speaker identification. We validate our idea on the LibrispeechMix dataset -- a multi-talker dataset derived from Librispeech, and present encouraging results.

* 5 pages, 2 figures, submitted to Interspeech 2021 
Access Paper or Ask Questions

Spectro-Temporal Deep Features for Disordered Speech Assessment and Recognition

Jan 14, 2022
Mengzhe Geng, Shansong Liu, Jianwei Yu, Xurong Xie, Shoukang Hu, Zi Ye, Zengrui Jin, Xunying Liu, Helen Meng

Automatic recognition of disordered speech remains a highly challenging task to date. Sources of variability commonly found in normal speech including accent, age or gender, when further compounded with the underlying causes of speech impairment and varying severity levels, create large diversity among speakers. To this end, speaker adaptation techniques play a vital role in current speech recognition systems. Motivated by the spectro-temporal level differences between disordered and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectro-temporal subspace basis embedding deep features derived by SVD decomposition of speech spectrum are proposed to facilitate both accurate speech intelligibility assessment and auxiliary feature based speaker adaptation of state-of-the-art hybrid DNN and end-to-end disordered speech recognition systems. Experiments conducted on the UASpeech corpus suggest the proposed spectro-temporal deep feature adapted systems consistently outperformed baseline i-Vector adaptation by up to 2.63% absolute (8.6% relative) reduction in word error rate (WER) with or without data augmentation. Learning hidden unit contribution (LHUC) based speaker adaptation was further applied. The final speaker adapted system using the proposed spectral basis embedding features gave an overall WER of 25.6% on the UASpeech test set of 16 dysarthric speakers

* Proceedings of INTERSPEECH 2021 
Access Paper or Ask Questions

"Notic My Speech" -- Blending Speech Patterns With Multimedia

Jun 12, 2020
Dhruva Sahrawat, Yaman Kumar, Shashwat Aggarwal, Yifang Yin, Rajiv Ratn Shah, Roger Zimmermann

Speech as a natural signal is composed of three parts - visemes (visual part of speech), phonemes (spoken part of speech), and language (the imposed structure). However, video as a medium for the delivery of speech and a multimedia construct has mostly ignored the cognitive aspects of speech delivery. For example, video applications like transcoding and compression have till now ignored the fact how speech is delivered and heard. To close the gap between speech understanding and multimedia video applications, in this paper, we show the initial experiments by modelling the perception on visual speech and showing its use case on video compression. On the other hand, in the visual speech recognition domain, existing studies have mostly modeled it as a classification problem, while ignoring the correlations between views, phonemes, visemes, and speech perception. This results in solutions which are further away from how human perception works. To bridge this gap, we propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding. We conduct experiments on three public visual speech recognition datasets. The experimental results show that our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate. Moreover, we show that there is a strong correlation between our model's understanding of multi-view speech and the human perception. This characteristic benefits downstream applications such as video compression and streaming where a significant number of less important frames can be compressed or eliminated while being able to maximally preserve human speech understanding with good user experience.

* Under Review 
Access Paper or Ask Questions

Accented Speech Recognition: Benchmarking, Pre-training, and Diverse Data

May 16, 2022
Alëna Aksënova, Zhehuai Chen, Chung-Cheng Chiu, Daan van Esch, Pavel Golik, Wei Han, Levi King, Bhuvana Ramabhadran, Andrew Rosenberg, Suzan Schwartz, Gary Wang

Building inclusive speech recognition systems is a crucial step towards developing technologies that speakers of all language varieties can use. Therefore, ASR systems must work for everybody independently of the way they speak. To accomplish this goal, there should be available data sets representing language varieties, and also an understanding of model configuration that is the most helpful in achieving robust understanding of all types of speech. However, there are not enough data sets for accented speech, and for the ones that are already available, more training approaches need to be explored to improve the quality of accented speech recognition. In this paper, we discuss recent progress towards developing more inclusive ASR systems, namely, the importance of building new data sets representing linguistic diversity, and exploring novel training approaches to improve performance for all users. We address recent directions within benchmarking ASR systems for accented speech, measure the effects of wav2vec 2.0 pre-training on accented speech recognition, and highlight corpora relevant for diverse ASR evaluations.

* 5 pages, 3 tables 
Access Paper or Ask Questions

LRSpeech: Extremely Low-Resource Speech Synthesis and Recognition

Aug 09, 2020
Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao, Tie-Yan Liu

Speech synthesis (text to speech, TTS) and recognition (automatic speech recognition, ASR) are important speech tasks, and require a large amount of text and speech pairs for model training. However, there are more than 6,000 languages in the world and most languages are lack of speech training data, which poses significant challenges when building TTS and ASR systems for extremely low-resource languages. In this paper, we develop LRSpeech, a TTS and ASR system under the extremely low-resource setting, which can support rare languages with low data cost. LRSpeech consists of three key techniques: 1) pre-training on rich-resource languages and fine-tuning on low-resource languages; 2) dual transformation between TTS and ASR to iteratively boost the accuracy of each other; 3) knowledge distillation to customize the TTS model on a high-quality target-speaker voice and improve the ASR model on multiple voices. We conduct experiments on an experimental language (English) and a truly low-resource language (Lithuanian) to verify the effectiveness of LRSpeech. Experimental results show that LRSpeech 1) achieves high quality for TTS in terms of both intelligibility (more than 98% intelligibility rate) and naturalness (above 3.5 mean opinion score (MOS)) of the synthesized speech, which satisfy the requirements for industrial deployment, 2) achieves promising recognition accuracy for ASR, and 3) last but not least, uses extremely low-resource training data. We also conduct comprehensive analyses on LRSpeech with different amounts of data resources, and provide valuable insights and guidances for industrial deployment. We are currently deploying LRSpeech into a commercialized cloud speech service to support TTS on more rare languages.

* KDD 2020 
Access Paper or Ask Questions

Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks

Jan 10, 2017
Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, Cesar Laurent Yoshua Bengio, Aaron Courville

Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.

Access Paper or Ask Questions