Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Yelp Food Identification via Image Feature Extraction and Classification

Feb 11, 2019
Fanbo Sun, Zhixiang Gu, Bo Feng

Yelp has been one of the most popular local service search engine in US since 2004. It is powered by crowd-sourced text reviews and photo reviews. Restaurant customers and business owners upload photo images to Yelp, including reviewing or advertising either food, drinks, or inside and outside decorations. It is obviously not so effective that labels for food photos rely on human editors, which is an issue should be addressed by innovative machine learning approaches. In this paper, we present a simple but effective approach which can identify up to ten kinds of food via raw photos from the challenge dataset. We use 1) image pre-processing techniques, including filtering and image augmentation, 2) feature extraction via convolutional neural networks (CNN), and 3) three ways of classification algorithms. Then, we illustrate the classification accuracy by tuning parameters for augmentations, CNN, and classification. Our experimental results show this simple but effective approach to identify up to 10 food types from images.

  
Access Paper or Ask Questions

Dixit: Interactive Visual Storytelling via Term Manipulation

Mar 11, 2019
Chao-Chun Hsu, Yu-Hua Chen, Zi-Yuan Chen, Hsin-Yu Lin, Ting-Hao 'Kenneth' Huang, Lun-Wei Ku

In this paper, we introduce Dixit, an interactive visual storytelling system that the user interacts with iteratively to compose a short story for a photo sequence. The user initiates the process by uploading a sequence of photos. Dixit first extracts text terms from each photo which describe the objects (e.g., boy, bike) or actions (e.g., sleep) in the photo, and then allows the user to add new terms or remove existing terms. Dixit then generates a short story based on these terms. Behind the scenes, Dixit uses an LSTM-based model trained on image caption data and FrameNet to distill terms from each image and utilizes a transformer decoder to compose a context-coherent story. Users change images or terms iteratively with Dixit to create the most ideal story. Dixit also allows users to manually edit and rate stories. The proposed procedure opens up possibilities for interpretable and controllable visual storytelling, allowing users to understand the story formation rationale and to intervene in the generation process.

* WWW'19 Demo, demo video: https://www.youtube.com/watch?v=CUu1MOwnveI 
  
Access Paper or Ask Questions

Lifespan Age Transformation Synthesis

Mar 21, 2020
Roy Or-El, Soumyadip Sengupta, Ohad Fried, Eli Shechtman, Ira Kemelmacher-Shlizerman

We address the problem of single photo age progression and regression-the prediction of how a person might look in the future, or how they looked in the past. Most existing aging methods are limited to changing the texture, overlooking transformations in head shape that occur during the human aging and growth process. This limits the applicability of previous methods to aging of adults to slightly older adults, and application of those methods to photos of children does not produce quality results. We propose a novel multi-domain image-to-image generative adversarial network architecture, whose learned latent space models a continuous bi-directional aging process. The network is trained on the FFHQ dataset, which we labeled for ages, gender, and semantic segmentation. Fixed age classes are used as anchors to approximate continuous age transformation. Our framework can predict a full head portrait for ages 0-70 from a single photo, modifying both texture and shape of the head. We demonstrate results on a wide variety of photos and datasets, and show significant improvement over the state of the art.

  
Access Paper or Ask Questions

Cross-modal Subspace Learning for Fine-grained Sketch-based Image Retrieval

May 28, 2017
Peng Xu, Qiyue Yin, Yongye Huang, Yi-Zhe Song, Zhanyu Ma, Liang Wang, Tao Xiang, W. Bastiaan Kleijn, Jun Guo

Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highly abstract. Therefore, matching sketch and photo directly using low-level visual clues are unsufficient, since a common low-level subspace that traverses semantically across the two modalities is non-trivial to establish. Most existing SBIR studies do not directly tackle this cross-modal problem. This naturally motivates us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been applied in the image-text matching successfully. In this paper, we introduce and compare a series of state-of-the-art cross-modal subspace learning methods and benchmark them on two recently released fine-grained SBIR datasets. Through thorough examination of the experimental results, we have demonstrated that the subspace learning can effectively model the sketch-photo domain-gap. In addition we draw a few key insights to drive future research.

* Accepted by Neurocomputing 
  
Access Paper or Ask Questions

StegaStamp: Invisible Hyperlinks in Physical Photographs

Apr 10, 2019
Matthew Tancik, Ben Mildenhall, Ren Ng

Imagine a world in which each photo, printed or digitally displayed, hides arbitrary digital data that can be accessed through an internet-connected imaging system. Another way to think about this is physical photographs that have unique QR codes invisibly embedded within them. This paper presents an architecture, algorithms, and a prototype implementation addressing this vision. Our key technical contribution is StegaStamp, the first steganographic algorithm to enable robust encoding and decoding of arbitrary hyperlink bitstrings into photos in a manner that approaches perceptual invisibility. StegaStamp comprises a deep neural network that learns an encoding/decoding algorithm robust to image perturbations that approximate the space of distortions resulting from real printing and photography. Our system prototype demonstrates real-time decoding of hyperlinks for photos from in-the-wild video subject to real-world variation in print quality, lighting, shadows, perspective, occlusion and viewing distance. Our prototype system robustly retrieves 56 bit hyperlinks after error correction -- sufficient to embed a unique code within every photo on the internet.

* Project page: http://www.matthewtancik.com/stegastamp 
  
Access Paper or Ask Questions

Camera View Adjustment Prediction for Improving Image Composition

Apr 15, 2021
Yu-Chuan Su, Raviteja Vemulapalli, Ben Weiss, Chun-Te Chu, Philip Andrew Mansfield, Lior Shapira, Colvin Pitts

Image composition plays an important role in the quality of a photo. However, not every camera user possesses the knowledge and expertise required for capturing well-composed photos. While post-capture cropping can improve the composition sometimes, it does not work in many common scenarios in which the photographer needs to adjust the camera view to capture the best shot. To address this issue, we propose a deep learning-based approach that provides suggestions to the photographer on how to adjust the camera view before capturing. By optimizing the composition before a photo is captured, our system helps photographers to capture better photos. As there is no publicly-available dataset for this task, we create a view adjustment dataset by repurposing existing image cropping datasets. Furthermore, we propose a two-stage semi-supervised approach that utilizes both labeled and unlabeled images for training a view adjustment model. Experiment results show that the proposed semi-supervised approach outperforms the corresponding supervised alternatives, and our user study results show that the suggested view adjustment improves image composition 79% of the time.

  
Access Paper or Ask Questions

Cycle Generative Adversarial Networks Algorithm With Style Transfer For Image Generation

Jan 11, 2021
Anugrah Akbar Praramadhan, Guntur Eka Saputra

The biggest challenge faced by a Machine Learning Engineer is the lack of data they have, especially for 2-dimensional images. The image is processed to be trained into a Machine Learning model so that it can recognize patterns in the data and provide predictions. This research is intended to create a solution using the Cycle Generative Adversarial Networks (GANs) algorithm in overcoming the problem of lack of data. Then use Style Transfer to be able to generate a new image based on the given style. Based on the results of testing the resulting model has been carried out several improvements, previously the loss value of the photo generator: 3.1267, monet style generator: 3.2026, photo discriminator: 0.6325, and monet style discriminator: 0.6931 to photo generator: 2.3792, monet style generator: 2.7291, photo discriminator: 0.5956, and monet style discriminator: 0.4940. It is hoped that the research will make the application of this solution useful in the fields of Education, Arts, Information Technology, Medicine, Astronomy, Automotive and other important fields.

* in Indonesian language 
  
Access Paper or Ask Questions

Vision-based Real Estate Price Estimation

Oct 03, 2018
Omid Poursaeed, Tomas Matera, Serge Belongie

Since the advent of online real estate database companies like Zillow, Trulia and Redfin, the problem of automatic estimation of market values for houses has received considerable attention. Several real estate websites provide such estimates using a proprietary formula. Although these estimates are often close to the actual sale prices, in some cases they are highly inaccurate. One of the key factors that affects the value of a house is its interior and exterior appearance, which is not considered in calculating automatic value estimates. In this paper, we evaluate the impact of visual characteristics of a house on its market value. Using deep convolutional neural networks on a large dataset of photos of home interiors and exteriors, we develop a method for estimating the luxury level of real estate photos. We also develop a novel framework for automated value assessment using the above photos in addition to home characteristics including size, offered price and number of bedrooms. Finally, by applying our proposed method for price estimation to a new dataset of real estate photos and metadata, we show that it outperforms Zillow's estimates.

* Machine Vision and Applications, 29(4), 667-676, 2018 
  
Access Paper or Ask Questions

Social Browsing on Flickr

Dec 07, 2006
Kristina Lerman, Laurie Jones

The new social media sites - blogs, wikis, del.icio.us and Flickr, among others - underscore the transformation of the Web to a participatory medium in which users are actively creating, evaluating and distributing information. The photo-sharing site Flickr, for example, allows users to upload photographs, view photos created by others, comment on those photos, etc. As is common to other social media sites, Flickr allows users to designate others as ``contacts'' and to track their activities in real time. The contacts (or friends) lists form the social network backbone of social media sites. We claim that these social networks facilitate new ways of interacting with information, e.g., through what we call social browsing. The contacts interface on Flickr enables users to see latest images submitted by their friends. Through an extensive analysis of Flickr data, we show that social browsing through the contacts' photo streams is one of the primary methods by which users find new images on Flickr. This finding has implications for creating personalized recommendation systems based on the user's declared contacts lists.

* 8 pages; submitted to the International Conference on Weblogs and Social Media 
  
Access Paper or Ask Questions

Understanding and Predicting The Attractiveness of Human Action Shot

Nov 02, 2017
Bin Dai, Baoyuan Wang, Gang Hua

Selecting attractive photos from a human action shot sequence is quite challenging, because of the subjective nature of the "attractiveness", which is mainly a combined factor of human pose in action and the background. Prior works have actively studied high-level image attributes including interestingness, memorability, popularity, and aesthetics. However, none of them has ever studied the "attractiveness" of human action shot. In this paper, we present the first study of the "attractiveness" of human action shots by taking a systematic data-driven approach. Specifically, we create a new action-shot dataset composed of about 8000 high quality action-shot photos. We further conduct rich crowd-sourced human judge studies on Amazon Mechanical Turk(AMT) in terms of global attractiveness of a single photo, and relative attractiveness of a pair of photos. A deep Siamese network with a novel hybrid distribution matching loss was further proposed to fully exploit both types of ratings. Extensive experiments reveal that (1) the property of action shot attractiveness is subjective but predicable (2) our proposed method is both efficient and effective for predicting the attractive human action shots.

  
Access Paper or Ask Questions
<<
10
11
12
13
14
15
16
17
18
19
20
21
22
>>