Alert button
Picture for Bryan A. Plummer

Bryan A. Plummer

Alert button

CLAMP: Contrastive LAnguage Model Prompt-tuning

Dec 04, 2023
Piotr Teterwak, Ximeng Sun, Bryan A. Plummer, Kate Saenko, Ser-Nam Lim

Large language models (LLMs) have emerged as powerful general-purpose interfaces for many machine learning problems. Recent work has adapted LLMs to generative visual tasks like image captioning, visual question answering, and visual chat, using a relatively small amount of instruction-tuning data. In this paper, we explore whether modern LLMs can also be adapted to classifying an image into a set of categories. First, we evaluate multimodal LLMs that are tuned for generative tasks on zero-shot image classification and find that their performance is far below that of specialized models like CLIP. We then propose an approach for light fine-tuning of LLMs using the same contrastive image-caption matching objective as CLIP. Our results show that LLMs can, indeed, achieve good image classification performance when adapted this way. Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model, while also retaining the LLM's generative abilities. LLM initialization appears to particularly help classification in domains under-represented in the visual pre-training data.

Viaarxiv icon

Learning to Compose SuperWeights for Neural Parameter Allocation Search

Dec 03, 2023
Piotr Teterwak, Soren Nelson, Nikoli Dryden, Dina Bashkirova, Kate Saenko, Bryan A. Plummer

Neural parameter allocation search (NPAS) automates parameter sharing by obtaining weights for a network given an arbitrary, fixed parameter budget. Prior work has two major drawbacks we aim to address. First, there is a disconnect in the sharing pattern between the search and training steps, where weights are warped for layers of different sizes during the search to measure similarity, but not during training, resulting in reduced performance. To address this, we generate layer weights by learning to compose sets of SuperWeights, which represent a group of trainable parameters. These SuperWeights are created to be large enough so they can be used to represent any layer in the network, but small enough that they are computationally efficient. The second drawback we address is the method of measuring similarity between shared parameters. Whereas prior work compared the weights themselves, we argue this does not take into account the amount of conflict between the shared weights. Instead, we use gradient information to identify layers with shared weights that wish to diverge from each other. We demonstrate that our SuperWeight Networks consistently boost performance over the state-of-the-art on the ImageNet and CIFAR datasets in the NPAS setting. We further show that our approach can generate parameters for many network architectures using the same set of weights. This enables us to support tasks like efficient ensembling and anytime prediction, outperforming fully-parameterized ensembles with 17% fewer parameters.

* Accepted at IEEE Winter Conference on Applications of Computer Vision (WACV) 2024 
Viaarxiv icon

A Unified Framework for Connecting Noise Modeling to Boost Noise Detection

Nov 30, 2023
Siqi Wang, Chau Pham, Bryan A. Plummer

Noisy labels can impair model performance, making the study of learning with noisy labels an important topic. Two conventional approaches are noise modeling and noise detection. However, these two methods are typically studied independently, and there has been limited work on their collaboration. In this work, we explore the integration of these two approaches, proposing an interconnected structure with three crucial blocks: noise modeling, source knowledge identification, and enhanced noise detection using noise source-knowledge-integration methods. This collaboration structure offers advantages such as discriminating hard negatives and preserving genuinely clean labels that might be suspiciously noisy. Our experiments on four datasets, featuring three types of noise and different combinations of each block, demonstrate the efficacy of these components' collaboration. Our collaborative structure methods achieve up to a 10% increase in top-1 classification accuracy in synthesized noise datasets and 3-5% in real-world noisy datasets. The results also suggest that these components make distinct contributions to overall performance across various noise scenarios. These findings provide valuable insights for designing noisy label learning methods customized for specific noise scenarios in the future. Our code is accessible to the public.

Viaarxiv icon

MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters

Nov 07, 2023
Chau Pham, Piotr Teterwak, Soren Nelson, Bryan A. Plummer

Most deep neural networks are trained under fixed network architectures and require retraining when the architecture changes. If expanding the network's size is needed, it is necessary to retrain from scratch, which is expensive. To avoid this, one can grow from a small network by adding random weights over time to gradually achieve the target network size. However, this naive approach falls short in practice as it brings too much noise to the growing process. Prior work tackled this issue by leveraging the already learned weights and training data for generating new weights through conducting a computationally expensive analysis step. In this paper, we introduce MixtureGrowth, a new approach to growing networks that circumvents the initialization overhead in prior work. Before growing, each layer in our model is generated with a linear combination of parameter templates. Newly grown layer weights are generated by using a new linear combination of existing templates for a layer. On one hand, these templates are already trained for the task, providing a strong initialization. On the other, the new coefficients provide flexibility for the added layer weights to learn something new. We show that our approach boosts top-1 accuracy over the state-of-the-art by 2-2.5% on CIFAR-100 and ImageNet datasets, while achieving comparable performance with fewer FLOPs to a larger network trained from scratch. Code is available at

* Accepted at IEEE Winter Conference on Applications of Computer Vision (WACV) 2024 
Viaarxiv icon

CHAMMI: A benchmark for channel-adaptive models in microscopy imaging

Oct 30, 2023
Zitong Chen, Chau Pham, Siqi Wang, Michael Doron, Nikita Moshkov, Bryan A. Plummer, Juan C. Caicedo

Most neural networks assume that input images have a fixed number of channels (three for RGB images). However, there are many settings where the number of channels may vary, such as microscopy images where the number of channels changes depending on instruments and experimental goals. Yet, there has not been a systemic attempt to create and evaluate neural networks that are invariant to the number and type of channels. As a result, trained models remain specific to individual studies and are hardly reusable for other microscopy settings. In this paper, we present a benchmark for investigating channel-adaptive models in microscopy imaging, which consists of 1) a dataset of varied-channel single-cell images, and 2) a biologically relevant evaluation framework. In addition, we adapted several existing techniques to create channel-adaptive models and compared their performance on this benchmark to fixed-channel, baseline models. We find that channel-adaptive models can generalize better to out-of-domain tasks and can be computationally efficient. We contribute a curated dataset ( and an evaluation API ( to facilitate objective comparisons in future research and applications.

* Accepted at NeurIPS Track on Datasets and Benchmarks, 2023 
Viaarxiv icon

Let Models Speak Ciphers: Multiagent Debate through Embeddings

Oct 10, 2023
Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen, Tianyi Liu, Jianbo Yuan, Bryan A. Plummer, Zhaoran Wang, Hongxia Yang

Figure 1 for Let Models Speak Ciphers: Multiagent Debate through Embeddings
Figure 2 for Let Models Speak Ciphers: Multiagent Debate through Embeddings
Figure 3 for Let Models Speak Ciphers: Multiagent Debate through Embeddings
Figure 4 for Let Models Speak Ciphers: Multiagent Debate through Embeddings

Discussion and debate among Large Language Models (LLMs) have gained considerable attention due to their potential to enhance the reasoning ability of LLMs. Although natural language is an obvious choice for communication due to LLM's language understanding capability, the token sampling step needed when generating natural language poses a potential risk of information loss, as it uses only one token to represent the model's belief across the entire vocabulary. In this paper, we introduce a communication regime named CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue. Specifically, we remove the token sampling step from LLMs and let them communicate their beliefs across the vocabulary through the expectation of the raw transformer output embeddings. Remarkably, by deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights. While the state-of-the-art LLM debate methods using natural language outperforms traditional inference by a margin of 1.5-8%, our experiment results show that CIPHER debate further extends this lead by 1-3.5% across five reasoning tasks and multiple open-source LLMs of varying sizes. This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.

Viaarxiv icon

Socratis: Are large multimodal models emotionally aware?

Sep 05, 2023
Katherine Deng, Arijit Ray, Reuben Tan, Saadia Gabriel, Bryan A. Plummer, Kate Saenko

Figure 1 for Socratis: Are large multimodal models emotionally aware?
Figure 2 for Socratis: Are large multimodal models emotionally aware?
Figure 3 for Socratis: Are large multimodal models emotionally aware?
Figure 4 for Socratis: Are large multimodal models emotionally aware?

Existing emotion prediction benchmarks contain coarse emotion labels which do not consider the diversity of emotions that an image and text can elicit in humans due to various reasons. Learning diverse reactions to multimodal content is important as intelligent machines take a central role in generating and delivering content to society. To address this gap, we propose Socratis, a societal reactions benchmark, where each image-caption (IC) pair is annotated with multiple emotions and the reasons for feeling them. Socratis contains 18K free-form reactions for 980 emotions on 2075 image-caption pairs from 5 widely-read news and image-caption (IC) datasets. We benchmark the capability of state-of-the-art multimodal large language models to generate the reasons for feeling an emotion given an IC pair. Based on a preliminary human study, we observe that humans prefer human-written reasons over 2 times more often than machine-generated ones. This shows our task is harder than standard generation tasks because it starkly contrasts recent findings where humans cannot tell apart machine vs human-written news articles, for instance. We further see that current captioning metrics based on large vision-language models also fail to correlate with human preferences. We hope that these findings and our benchmark will inspire further research on training emotionally aware models.

* ICCV 2023 WECIA 
Viaarxiv icon

From Fake to Real (FFR): A two-stage training pipeline for mitigating spurious correlations with synthetic data

Aug 08, 2023
Maan Qraitem, Kate Saenko, Bryan A. Plummer

Figure 1 for From Fake to Real (FFR): A two-stage training pipeline for mitigating spurious correlations with synthetic data
Figure 2 for From Fake to Real (FFR): A two-stage training pipeline for mitigating spurious correlations with synthetic data
Figure 3 for From Fake to Real (FFR): A two-stage training pipeline for mitigating spurious correlations with synthetic data

Visual recognition models are prone to learning spurious correlations induced by an imbalanced training set where certain groups (\eg Females) are under-represented in certain classes (\eg Programmers). Generative models offer a promising direction in mitigating this bias by generating synthetic data for the minority samples and thus balancing the training set. However, prior work that uses these approaches overlooks that visual recognition models could often learn to differentiate between real and synthetic images and thus fail to unlearn the bias in the original dataset. In our work, we propose a novel two-stage pipeline to mitigate this issue where 1) we pre-train a model on a balanced synthetic dataset and then 2) fine-tune on the real data. Using this pipeline, we avoid training on both real and synthetic data, thus avoiding the bias between real and synthetic data. Moreover, we learn robust features against the bias in the first step that mitigate the bias in the second step. Moreover, our pipeline naturally integrates with bias mitigation methods; they can be simply applied to the fine-tuning step. As our experiments prove, our pipeline can further improve the performance of bias mitigation methods obtaining state-of-the-art performance on three large-scale datasets.

Viaarxiv icon

Multiscale Video Pretraining for Long-Term Activity Forecasting

Jul 24, 2023
Reuben Tan, Matthias De Lange, Michael Iuzzolino, Bryan A. Plummer, Kate Saenko, Karl Ridgeway, Lorenzo Torresani

Figure 1 for Multiscale Video Pretraining for Long-Term Activity Forecasting
Figure 2 for Multiscale Video Pretraining for Long-Term Activity Forecasting
Figure 3 for Multiscale Video Pretraining for Long-Term Activity Forecasting
Figure 4 for Multiscale Video Pretraining for Long-Term Activity Forecasting

Long-term activity forecasting is an especially challenging research problem because it requires understanding the temporal relationships between observed actions, as well as the variability and complexity of human activities. Despite relying on strong supervision via expensive human annotations, state-of-the-art forecasting approaches often generalize poorly to unseen data. To alleviate this issue, we propose Multiscale Video Pretraining (MVP), a novel self-supervised pretraining approach that learns robust representations for forecasting by learning to predict contextualized representations of future video clips over multiple timescales. MVP is based on our observation that actions in videos have a multiscale nature, where atomic actions typically occur at a short timescale and more complex actions may span longer timescales. We compare MVP to state-of-the-art self-supervised video learning approaches on downstream long-term forecasting tasks including long-term action anticipation and video summary prediction. Our comprehensive experiments across the Ego4D and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs state-of-the-art methods by significant margins. Notably, MVP obtains a relative performance gain of over 20% accuracy in video summary forecasting over existing methods.

Viaarxiv icon