Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo style transfer": models, code, and papers

Learning to Sketch Human Facial Portraits using Personal Styles by Case-Based Reasoning

Sep 13, 2016
Bingwen Jin, Songhua Xu, Weidong Geng

This paper employs case-based reasoning (CBR) to capture the personal styles of individual artists and generate the human facial portraits from photos accordingly. For each human artist to be mimicked, a series of cases are firstly built-up from her/his exemplars of source facial photo and hand-drawn sketch, and then its stylization for facial photo is transformed as a style-transferring process of iterative refinement by looking-for and applying best-fit cases in a sense of style optimization. Two models, fitness evaluation model and parameter estimation model, are learned for case retrieval and adaptation respectively from these cases. The fitness evaluation model is to decide which case is best-fitted to the sketching of current interest, and the parameter estimation model is to automate case adaptation. The resultant sketch is synthesized progressively with an iterative loop of retrieval and adaptation of candidate cases until the desired aesthetic style is achieved. To explore the effectiveness and advantages of the novel approach, we experimentally compare the sketch portraits generated by the proposed method with that of a state-of-the-art example-based facial sketch generation algorithm as well as a couple commercial software packages. The comparisons reveal that our CBR based synthesis method for facial portraits is superior both in capturing and reproducing artists' personal illustration styles to the peer methods.

Access Paper or Ask Questions

A Closed-form Solution to Photorealistic Image Stylization

Jul 27, 2018
Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, Jan Kautz

Photorealistic image stylization concerns transferring style of a reference photo to a content photo with the constraint that the stylized photo should remain photorealistic. While several photorealistic image stylization methods exist, they tend to generate spatially inconsistent stylizations with noticeable artifacts. In this paper, we propose a method to address these issues. The proposed method consists of a stylization step and a smoothing step. While the stylization step transfers the style of the reference photo to the content photo, the smoothing step ensures spatially consistent stylizations. Each of the steps has a closed-form solution and can be computed efficiently. We conduct extensive experimental validations. The results show that the proposed method generates photorealistic stylization outputs that are more preferred by human subjects as compared to those by the competing methods while running much faster. Source code and additional results are available at .

* Accepted by ECCV 2018 
Access Paper or Ask Questions

Face Destylization

Feb 05, 2018
Fatemeh Shiri, Xin Yu, Fatih Porikli, Piotr Koniusz

Numerous style transfer methods which produce artistic styles of portraits have been proposed to date. However, the inverse problem of converting the stylized portraits back into realistic faces is yet to be investigated thoroughly. Reverting an artistic portrait to its original photo-realistic face image has potential to facilitate human perception and identity analysis. In this paper, we propose a novel Face Destylization Neural Network (FDNN) to restore the latent photo-realistic faces from the stylized ones. We develop a Style Removal Network composed of convolutional, fully-connected and deconvolutional layers. The convolutional layers are designed to extract facial components from stylized face images. Consecutively, the fully-connected layer transfers the extracted feature maps of stylized images into the corresponding feature maps of real faces and the deconvolutional layers generate real faces from the transferred feature maps. To enforce the destylized faces to be similar to authentic face images, we employ a discriminative network, which consists of convolutional and fully connected layers. We demonstrate the effectiveness of our network by conducting experiments on an extensive set of synthetic images. Furthermore, we illustrate our network can recover faces from stylized portraits and real paintings for which the stylized data was unavailable during the training phase.

Access Paper or Ask Questions

Automatic Content-Aware Color and Tone Stylization

Nov 12, 2015
Joon-Young Lee, Kalyan Sunkavalli, Zhe Lin, Xiaohui Shen, In So Kweon

We introduce a new technique that automatically generates diverse, visually compelling stylizations for a photograph in an unsupervised manner. We achieve this by learning style ranking for a given input using a large photo collection and selecting a diverse subset of matching styles for final style transfer. We also propose a novel technique that transfers the global color and tone of the chosen exemplars to the input photograph while avoiding the common visual artifacts produced by the existing style transfer methods. Together, our style selection and transfer techniques produce compelling, artifact-free results on a wide range of input photographs, and a user study shows that our results are preferred over other techniques.

* 12 pages, 11 figures 
Access Paper or Ask Questions

Deep Factorised Inverse-Sketching

Aug 07, 2018
Kaiyue Pang, Da Li, Jifei Song, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales

Modelling human free-hand sketches has become topical recently, driven by practical applications such as fine-grained sketch based image retrieval (FG-SBIR). Sketches are clearly related to photo edge-maps, but a human free-hand sketch of a photo is not simply a clean rendering of that photo's edge map. Instead there is a fundamental process of abstraction and iconic rendering, where overall geometry is warped and salient details are selectively included. In this paper we study this sketching process and attempt to invert it. We model this inversion by translating iconic free-hand sketches to contours that resemble more geometrically realistic projections of object boundaries, and separately factorise out the salient added details. This factorised re-representation makes it easier to match a free-hand sketch to a photo instance of an object. Specifically, we propose a novel unsupervised image style transfer model based on enforcing a cyclic embedding consistency constraint. A deep FG-SBIR model is then formulated to accommodate complementary discriminative detail from each factorised sketch for better matching with the corresponding photo. Our method is evaluated both qualitatively and quantitatively to demonstrate its superiority over a number of state-of-the-art alternatives for style transfer and FG-SBIR.

* Accepted to ECCV 2018 
Access Paper or Ask Questions

Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style Transfer

Apr 11, 2017
Xin Wang, Geoffrey Oxholm, Da Zhang, Yuan-Fang Wang

Transferring artistic styles onto everyday photographs has become an extremely popular task in both academia and industry. Recently, offline training has replaced on-line iterative optimization, enabling nearly real-time stylization. When those stylization networks are applied directly to high-resolution images, however, the style of localized regions often appears less similar to the desired artistic style. This is because the transfer process fails to capture small, intricate textures and maintain correct texture scales of the artworks. Here we propose a multimodal convolutional neural network that takes into consideration faithful representations of both color and luminance channels, and performs stylization hierarchically with multiple losses of increasing scales. Compared to state-of-the-art networks, our network can also perform style transfer in nearly real-time by conducting much more sophisticated training offline. By properly handling style and texture cues at multiple scales using several modalities, we can transfer not just large-scale, obvious style cues but also subtle, exquisite ones. That is, our scheme can generate results that are visually pleasing and more similar to multiple desired artistic styles with color and texture cues at multiple scales.

* Accepted by CVPR 2017 
Access Paper or Ask Questions

Stylizing Face Images via Multiple Exemplars

Aug 28, 2017
Yibing Song, Linchao Bao, Shengfeng He, Qingxiong Yang, Ming-Hsuan Yang

We address the problem of transferring the style of a headshot photo to face images. Existing methods using a single exemplar lead to inaccurate results when the exemplar does not contain sufficient stylized facial components for a given photo. In this work, we propose an algorithm to stylize face images using multiple exemplars containing different subjects in the same style. Patch correspondences between an input photo and multiple exemplars are established using a Markov Random Field (MRF), which enables accurate local energy transfer via Laplacian stacks. As image patches from multiple exemplars are used, the boundaries of facial components on the target image are inevitably inconsistent. The artifacts are removed by a post-processing step using an edge-preserving filter. Experimental results show that the proposed algorithm consistently produces visually pleasing results.

* In CVIU 2017. Project Page: 
Access Paper or Ask Questions

Non-Parametric Neural Style Transfer

Aug 29, 2021
Nicholas Kolkin

It seems easy to imagine a photograph of the Eiffel Tower painted in the style of Vincent van Gogh's 'The Starry Night', but upon introspection it is difficult to precisely define what this would entail. What visual elements must an image contain to represent the 'content' of the Eiffel Tower? What visual elements of 'The Starry Night' are caused by van Gogh's 'style' rather than his decision to depict a village under the night sky? Precisely defining 'content' and 'style' is a central challenge of designing algorithms for artistic style transfer, algorithms which can recreate photographs using an artwork's style. My efforts defining these terms, and designing style transfer algorithms themselves, are the focus of this thesis. I will begin by proposing novel definitions of style and content based on optimal transport and self-similarity, and demonstrating how a style transfer algorithm based on these definitions generates outputs with improved visual quality. Then I will describe how the traditional texture-based definition of style can be expanded to include elements of geometry and proportion by jointly optimizing a keypoint-guided deformation field alongside the stylized output's pixels. Finally I will describe a framework inspired by both modern neural style transfer algorithms and traditional patch-based synthesis approaches which is fast, general, and offers state-of-the-art visual quality.

* PhD thesis 
Access Paper or Ask Questions

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

Feb 24, 2021
Bing Li, Yuanlue Zhu, Yitong Wang, Chia-Wen Lin, Bernard Ghanem, Linlin Shen

In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, such anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose Ani- GAN, a novel GAN-based translator that synthesizes highquality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photoface. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods.

Access Paper or Ask Questions

MVStylizer: An Efficient Edge-Assisted Video Photorealistic Style Transfer System for Mobile Phones

Jun 01, 2020
Ang Li, Chunpeng Wu, Yiran Chen, Bin Ni

Recent research has made great progress in realizing neural style transfer of images, which denotes transforming an image to a desired style. Many users start to use their mobile phones to record their daily life, and then edit and share the captured images and videos with other users. However, directly applying existing style transfer approaches on videos, i.e., transferring the style of a video frame by frame, requires an extremely large amount of computation resources. It is still technically unaffordable to perform style transfer of videos on mobile phones. To address this challenge, we propose MVStylizer, an efficient edge-assisted photorealistic video style transfer system for mobile phones. Instead of performing stylization frame by frame, only key frames in the original video are processed by a pre-trained deep neural network (DNN) on edge servers, while the rest of stylized intermediate frames are generated by our designed optical-flow-based frame interpolation algorithm on mobile phones. A meta-smoothing module is also proposed to simultaneously upscale a stylized frame to arbitrary resolution and remove style transfer related distortions in these upscaled frames. In addition, for the sake of continuously enhancing the performance of the DNN model on the edge server, we adopt a federated learning scheme to keep retraining each DNN model on the edge server with collected data from mobile clients and syncing with a global DNN model on the cloud server. Such a scheme effectively leverages the diversity of collected data from various mobile clients and efficiently improves the system performance. Our experiments demonstrate that MVStylizer can generate stylized videos with an even better visual quality compared to the state-of-the-art method while achieving 75.5$\times$ speedup for 1920$\times$1080 videos.

Access Paper or Ask Questions