Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Facial emotion recognition has been typically cast as a single-label classification problem of one out of six prototypical emotions. However, that is an oversimplification that is unsuitable for representing the multifaceted spectrum of spontaneous emotional states, which are most often the result of a combination of multiple emotions contributing at different intensities. Building on this, a promising direction that was explored recently is to cast emotion recognition as a distribution learning problem. Still, such approaches are limited in that research datasets are typically annotated with a single emotion class. In this paper, we contribute a novel approach to describe complex emotional states as probability distributions over a set of emotion classes. To do so, we propose a solution to automatically re-label existing datasets by exploiting the result of a study in which a large set of both basic and compound emotions is mapped to probability distributions in the Valence-Arousal-Dominance (VAD) space. In this way, given a face image annotated with VAD values, we can estimate the likelihood of it belonging to each of the distributions, so that emotional states can be described as a mixture of emotions, enriching their description, while also accounting for the ambiguous nature of their perception. In a preliminary set of experiments, we illustrate the advantages of this solution and a new possible direction of investigation. Data annotations are available at https://github.com/jbcnrlz/affectnet-b-annotation.
Accurate identification of cat breeds from images is a challenging task due to subtle differences in fur patterns, facial structure, and color. In this paper, we present a deep learning-based approach for classifying cat breeds using a subset of the Oxford-IIIT Pet Dataset, which contains high-resolution images of various domestic breeds. We employed the Global Context Vision Transformer (GCViT) architecture-tiny for cat breed recognition. To improve model generalization, we used extensive data augmentation, including rotation, horizontal flipping, and brightness adjustment. Experimental results show that the GCViT-Tiny model achieved a test accuracy of 92.00% and validation accuracy of 94.54%. These findings highlight the effectiveness of transformer-based architectures for fine-grained image classification tasks. Potential applications include veterinary diagnostics, animal shelter management, and mobile-based breed recognition systems. We also provide a hugging face demo at https://huggingface.co/spaces/bfarhad/cat-breed-classifier.
Surveillance facial images are often captured under unconstrained conditions, resulting in severe quality degradation due to factors such as low resolution, motion blur, occlusion, and poor lighting. Although recent face restoration techniques applied to surveillance cameras can significantly enhance visual quality, they often compromise fidelity (i.e., identity-preserving features), which directly conflicts with the primary objective of surveillance images -- reliable identity verification. Existing facial image quality assessment (FIQA) predominantly focus on either visual quality or recognition-oriented evaluation, thereby failing to jointly address visual quality and fidelity, which are critical for surveillance applications. To bridge this gap, we propose the first comprehensive study on surveillance facial image quality assessment (SFIQA), targeting the unique challenges inherent to surveillance scenarios. Specifically, we first construct SFIQA-Bench, a multi-dimensional quality assessment benchmark for surveillance facial images, which consists of 5,004 surveillance facial images captured by three widely deployed surveillance cameras in real-world scenarios. A subjective experiment is conducted to collect six dimensional quality ratings, including noise, sharpness, colorfulness, contrast, fidelity and overall quality, covering the key aspects of SFIQA. Furthermore, we propose SFIQA-Assessor, a lightweight multi-task FIQA model that jointly exploits complementary facial views through cross-view feature interaction, and employs learnable task tokens to guide the unified regression of multiple quality dimensions. The experiment results on the proposed dataset show that our method achieves the best performance compared with the state-of-the-art general image quality assessment (IQA) and FIQA methods, validating its effectiveness for real-world surveillance applications.
Deep neural networks often inherit social and demographic biases from annotated data during model training, leading to unfair predictions, especially in the presence of sensitive attributes like race, age, gender etc. Existing methods fall prey to the inherent data imbalance between attribute groups and inadvertently emphasize on sensitive attributes, worsening unfairness and performance. To surmount these challenges, we propose SHaSaM (Submodular Hard Sample Mining), a novel combinatorial approach that models fairness-driven representation learning as a submodular hard-sample mining problem. Our two-stage approach comprises of SHaSaM-MINE, which introduces a submodular subset selection strategy to mine hard positives and negatives - effectively mitigating data imbalance, and SHaSaM-LEARN, which introduces a family of combinatorial loss functions based on Submodular Conditional Mutual Information to maximize the decision boundary between target classes while minimizing the influence of sensitive attributes. This unified formulation restricts the model from learning features tied to sensitive attributes, significantly enhancing fairness without sacrificing performance. Experiments on CelebA and UTKFace demonstrate that SHaSaM achieves state-of-the-art results, with up to 2.7 points improvement in model fairness (Equalized Odds) and a 3.5% gain in Accuracy, within fewer epochs as compared to existing methods.
With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
Incorporating individual-level cognitive priors offers an important route to personalizing neural networks, yet accurately eliciting such priors remains challenging: existing methods either fail to uniquely identify them or introduce systematic biases. Here, we introduce PriorProbe, a novel elicitation approach grounded in Markov Chain Monte Carlo with People that recovers fine-grained, individual-specific priors. Focusing on a facial expression recognition task, we apply PriorProbe to individual participants and test whether integrating the recovered priors with a state-of-the-art neural network improves its ability to predict an individual's classification on ambiguous stimuli. The PriorProbe-derived priors yield substantial performance gains, outperforming both the neural network alone and alternative sources of priors, while preserving the network's inference on ground-truth labels. Together, these results demonstrate that PriorProbe provides a general and interpretable framework for personalizing deep neural networks.
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.