Abstract:The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
Abstract:Air pollution, particularly airborne particulate matter (PM), poses a significant threat to public health globally. It is crucial to comprehend the association between PM-associated toxic components and their cellular targets in humans to understand the mechanisms by which air pollution impacts health and to establish causal relationships between air pollution and public health consequences. Although many studies have explored the impact of PM on human health, the understanding of the association between toxins and the associated targets remain limited. Leveraging cutting-edge deep learning technologies, we developed tipFormer (toxin-protein interaction prediction based on transformer), a novel deep-learning tool for identifying toxic components capable of penetrating human cells and instigating pathogenic biological activities and signaling cascades. Experimental results show that tipFormer effectively captures interactions between proteins and toxic components. It incorporates dual pre-trained language models to encode protein sequences and chemicals. It employs a convolutional encoder to assimilate the sequential attributes of proteins and chemicals. It then introduces a learning module with a cross-attention mechanism to decode and elucidate the multifaceted interactions pivotal for the hotspots binding proteins and chemicals. Experimental results show that tipFormer effectively captures interactions between proteins and toxic components. This approach offers significant value to air quality and toxicology researchers by allowing high-throughput identification and prioritization of hazards. It supports more targeted laboratory studies and field measurements, ultimately enhancing our understanding of how air pollution impacts human health.