In this paper, we introduce MotivNet, a generalizable facial emotion recognition model for robust real-world application. Current state-of-the-art FER models tend to have weak generalization when tested on diverse data, leading to deteriorated performance in the real world and hindering FER as a research domain. Though researchers have proposed complex architectures to address this generalization issue, they require training cross-domain to obtain generalizable results, which is inherently contradictory for real-world application. Our model, MotivNet, achieves competitive performance across datasets without cross-domain training by using Meta-Sapiens as a backbone. Sapiens is a human vision foundational model with state-of-the-art generalization in the real world through large-scale pretraining of a Masked Autoencoder. We propose MotivNet as an additional downstream task for Sapiens and define three criteria to evaluate MotivNet's viability as a Sapiens task: benchmark performance, model similarity, and data similarity. Throughout this paper, we describe the components of MotivNet, our training approach, and our results showing MotivNet is generalizable across domains. We demonstrate that MotivNet can be benchmarked against existing SOTA models and meets the listed criteria, validating MotivNet as a Sapiens downstream task, and making FER more incentivizing for in-the-wild application. The code is available at https://github.com/OSUPCVLab/EmotionFromFaceImages.
Micro-gesture recognition and behavior-based emotion prediction are both highly challenging tasks that require modeling subtle, fine-grained human behaviors, primarily leveraging video and skeletal pose data. In this work, we present two multimodal frameworks designed to tackle both problems on the iMiGUE dataset. For micro-gesture classification, we explore the complementary strengths of RGB and 3D pose-based representations to capture nuanced spatio-temporal patterns. To comprehensively represent gestures, video, and skeletal embeddings are extracted using MViTv2-S and 2s-AGCN, respectively. Then, they are integrated through a Cross-Modal Token Fusion module to combine spatial and pose information. For emotion recognition, our framework extends to behavior-based emotion prediction, a binary classification task identifying emotional states based on visual cues. We leverage facial and contextual embeddings extracted using SwinFace and MViTv2-S models and fuse them through an InterFusion module designed to capture emotional expressions and body gestures. Experiments conducted on the iMiGUE dataset, within the scope of the MiGA 2025 Challenge, demonstrate the robust performance and accuracy of our method in the behavior-based emotion prediction task, where our approach secured 2nd place.
Recent text-to-image diffusion models have demonstrated remarkable generation of realistic facial images conditioned on textual prompts and human identities, enabling creating personalized facial imagery. However, existing prompt-based methods for removing or modifying identity-specific features rely either on the subject being well-represented in the pre-trained model or require model fine-tuning for specific identities. In this work, we analyze the identity generation process and introduce a reverse personalization framework for face anonymization. Our approach leverages conditional diffusion inversion, allowing direct manipulation of images without using text prompts. To generalize beyond subjects in the model's training data, we incorporate an identity-guided conditioning branch. Unlike prior anonymization methods, which lack control over facial attributes, our framework supports attribute-controllable anonymization. We demonstrate that our method achieves a state-of-the-art balance between identity removal, attribute preservation, and image quality. Source code and data are available at https://github.com/hanweikung/reverse-personalization .
Speech-driven 3D talking head generation aims to produce lifelike facial animations precisely synchronized with speech. While considerable progress has been made in achieving high lip-synchronization accuracy, existing methods largely overlook the intricate nuances of individual speaking styles, which limits personalization and realism. In this work, we present a novel framework for personalized 3D talking head animation, namely "PTalker". This framework preserves speaking style through style disentanglement from audio and facial motion sequences and enhances lip-synchronization accuracy through a three-level alignment mechanism between audio and mesh modalities. Specifically, to effectively disentangle style and content, we design disentanglement constraints that encode driven audio and motion sequences into distinct style and content spaces to enhance speaking style representation. To improve lip-synchronization accuracy, we adopt a modality alignment mechanism incorporating three aspects: spatial alignment using Graph Attention Networks to capture vertex connectivity in the 3D mesh structure, temporal alignment using cross-attention to capture and synchronize temporal dependencies, and feature alignment by top-k bidirectional contrastive losses and KL divergence constraints to ensure consistency between speech and mesh modalities. Extensive qualitative and quantitative experiments on public datasets demonstrate that PTalker effectively generates realistic, stylized 3D talking heads that accurately match identity-specific speaking styles, outperforming state-of-the-art methods. The source code and supplementary videos are available at: PTalker.
The rapid advancement of generative artificial intelligence has enabled the creation of highly realistic fake facial images, posing serious threats to personal privacy and the integrity of online information. Existing deepfake detection methods often rely on handcrafted forensic cues and complex architectures, achieving strong performance in intra-domain settings but suffering significant degradation when confronted with unseen forgery patterns. In this paper, we propose GenDF, a simple yet effective framework that transfers a powerful large-scale vision model to the deepfake detection task with a compact and neat network design. GenDF incorporates deepfake-specific representation learning to capture discriminative patterns between real and fake facial images, feature space redistribution to mitigate distribution mismatch, and a classification-invariant feature augmentation strategy to enhance generalization without introducing additional trainable parameters. Extensive experiments demonstrate that GenDF achieves state-of-the-art generalization performance in cross-domain and cross-manipulation settings while requiring only 0.28M trainable parameters, validating the effectiveness and efficiency of the proposed framework.
Smartphone-based tele-dermatology assumes that colorimetric calibration ensures clinical reliability, yet this remains untested for underrepresented skin phototypes. We investigated whether standard calibration translates to reliable clinical biomarkers using 43,425 images from 965 Korean subjects (Fitzpatrick III-IV) across DSLR, tablet, and smartphone devices. While Linear Color Correction Matrix (CCM) normalization reduced color error by 67-77% -- achieving near-clinical accuracy (Delta E < 2.3) -- this success did not translate to biomarker reliability. We identify a phenomenon termed "color-clinical decoupling": despite perceptual accuracy, the Individual Typology Angle (ITA) showed poor inter-device agreement (ICC = 0.40), while the Melanin Index achieved good agreement (ICC = 0.77). This decoupling is driven by the ITA formula's sensitivity to b* channel noise and is further compounded by anatomical variance. Facial region accounts for 25.2% of color variance -- 3.6x greater than device effects (7.0%) -- challenging the efficacy of single-patch calibration. Our results demonstrate that current colorimetric standards are insufficient for clinical-grade biomarker extraction, necessitating region-aware protocols for mobile dermatology.
Recent progress in diffusion models has significantly advanced the field of human image animation. While existing methods can generate temporally consistent results for short or regular motions, significant challenges remain, particularly in generating long-duration videos. Furthermore, the synthesis of fine-grained facial and hand details remains under-explored, limiting the applicability of current approaches in real-world, high-quality applications. To address these limitations, we propose a diffusion transformer (DiT)-based framework which focuses on generating high-fidelity and long-duration human animation videos. First, we design a set of hybrid implicit guidance signals and a sharpness guidance factor, enabling our framework to additionally incorporate detailed facial and hand features as guidance. Next, we incorporate the time-aware position shift fusion module, modify the input format within the DiT backbone, and refer to this mechanism as the Position Shift Adaptive Module, which enables video generation of arbitrary length. Finally, we introduce a novel data augmentation strategy and a skeleton alignment model to reduce the impact of human shape variations across different identities. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving superior performance in both high-fidelity and long-duration human image animation.
Text-driven image manipulation often suffers from attribute entanglement, where modifying a target attribute (e.g., adding bangs) unintentionally alters other semantic properties such as identity or appearance. The Predict, Prevent, and Evaluate (PPE) framework addresses this issue by leveraging pre-trained vision-language models for disentangled editing. In this work, we analyze the PPE framework, focusing on its architectural components, including BERT-based attribute prediction and StyleGAN2-based image generation on the CelebA-HQ dataset. Through empirical analysis, we identify a limitation in the original regularization strategy, where latent updates remain dense and prone to semantic leakage. To mitigate this issue, we introduce a sparsity-based constraint using L1 regularization on latent space manipulation. Experimental results demonstrate that the proposed approach enforces more focused and controlled edits, effectively reducing unintended changes in non-target attributes while preserving facial identity.
This report studies diffusion posterior sampling (DPS) for single-image super-resolution (SISR) under a known degradation model. We implement a likelihood-guided sampling procedure that combines an unconditional diffusion prior with gradient-based conditioning to enforce measurement consistency for $4\times$ super-resolution with additive Gaussian noise. We evaluate posterior sampling (PS) conditioning across guidance scales and noise levels, using PSNR and SSIM as fidelity metrics and a combined selection score $(\mathrm{PSNR}/40)+\mathrm{SSIM}$. Our ablation shows that moderate guidance improves reconstruction quality, with the best configuration achieved at PS scale $0.95$ and noise standard deviation $σ=0.01$ (score $1.45231$). Qualitative results confirm that the selected PS setting restores sharper edges and more coherent facial details compared to the downsampled inputs, while alternative conditioning strategies (e.g., MCG and PS-annealed) exhibit different texture fidelity trade-offs. These findings highlight the importance of balancing diffusion priors and measurement-gradient strength to obtain stable, high-quality reconstructions without retraining the diffusion model for each operator.
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.