Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
Portrait customization (PC) has recently garnered significant attention due to its potential applications. However, existing PC methods lack precise identity (ID) preservation and face control. To address these tissues, we propose Diff-PC, a diffusion-based framework for zero-shot PC, which generates realistic portraits with high ID fidelity, specified facial attributes, and diverse backgrounds. Specifically, our approach employs the 3D face predictor to reconstruct the 3D-aware facial priors encompassing the reference ID, target expressions, and poses. To capture fine-grained face details, we design ID-Encoder that fuses local and global facial features. Subsequently, we devise ID-Ctrl using the 3D face to guide the alignment of ID features. We further introduce ID-Injector to enhance ID fidelity and facial controllability. Finally, training on our collected ID-centric dataset improves face similarity and text-to-image (T2I) alignment. Extensive experiments demonstrate that Diff-PC surpasses state-of-the-art methods in ID preservation, facial control, and T2I consistency. Furthermore, our method is compatible with multi-style foundation models.
Benefiting from the significant advancements in text-to-image diffusion models, research in personalized image generation, particularly customized portrait generation, has also made great strides recently. However, existing methods either require time-consuming fine-tuning and lack generalizability or fail to achieve high fidelity in facial details. To address these issues, we propose FaceSnap, a novel method based on Stable Diffusion (SD) that requires only a single reference image and produces extremely consistent results in a single inference stage. This method is plug-and-play and can be easily extended to different SD models. Specifically, we design a new Facial Attribute Mixer that can extract comprehensive fused information from both low-level specific features and high-level abstract features, providing better guidance for image generation. We also introduce a Landmark Predictor that maintains reference identity across landmarks with different poses, providing diverse yet detailed spatial control conditions for image generation. Then we use an ID-preserving module to inject these into the UNet. Experimental results demonstrate that our approach performs remarkably in personalized and customized portrait generation, surpassing other state-of-the-art methods in this domain.
Precision in radiation therapy relies on immobilization systems that limit patient motion. Thermoplastic masks are commonly used for this purpose, but subtle voluntary and involuntary movements such as jaw shifts, deep breathing, or eye squinting may still compromise treatment accuracy. Existing motion tracking methods are limited: optical systems require a clear line of sight and only detect surface motion, while X-ray-based tracking introduces additional ionizing radiation. This study explores the use of low-power, non-ionizing millimeter-wave (mmWave) sensing for through-mask motion detection. We characterize the RF properties of thermoplastic mask material in the 28-38 GHz range and perform motion detection using a 1 GHz bandwidth centered at 28 GHz. We use a frequency-domain system with horn antennas in a custom-built anechoic chamber to capture changes in the amplitude and phase of transmitted RF waves in response to subtle head and facial movements. These findings lay groundwork for future real-time through-mask motion tracking and future integration with multi-antenna systems and machine learning for error correction during radiotherapy.
The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
Existing face parsing methods usually misclassify occlusions as facial components. This is because occlusion is a high-level concept, it does not refer to a concrete category of object. Thus, constructing a real-world face dataset covering all categories of occlusion object is almost impossible and accurate mask annotation is labor-intensive. To deal with the problems, we present S$^3$POT, a contrast-driven framework synergizing face generation with self-supervised spatial prompting, to achieve occlusion segmentation. The framework is inspired by the insights: 1) Modern face generators' ability to realistically reconstruct occluded regions, creating an image that preserve facial geometry while eliminating occlusion, and 2) Foundation segmentation models' (e.g., SAM) capacity to extract precise mask when provided with appropriate prompts. In particular, S$^3$POT consists of three modules: Reference Generation (RF), Feature enhancement (FE), and Prompt Selection (PS). First, a reference image is produced by RF using structural guidance from parsed mask. Second, FE performs contrast of tokens between raw and reference images to obtain an initial prompt, then modifies image features with the prompt by cross-attention. Third, based on the enhanced features, PS constructs a set of positive and negative prompts and screens them with a self-attention network for a mask decoder. The network is learned under the guidance of three novel and complementary objective functions without occlusion ground truth mask involved. Extensive experiments on a dedicatedly collected dataset demonstrate S$^3$POT's superior performance and the effectiveness of each module.
Diffusion models have recently shown strong progress in generative tasks, offering a more stable alternative to GAN-based approaches for makeup transfer. Existing methods often suffer from limited datasets, poor disentanglement between identity and makeup features, and weak controllability. To address these issues, we make three contributions. First, we construct a curated high-quality dataset using a train-generate-filter-retrain strategy that combines synthetic, realistic, and filtered samples to improve diversity and fidelity. Second, we design a diffusion-based framework that disentangles identity and makeup features, ensuring facial structure and skin tone are preserved while applying accurate and diverse cosmetic styles. Third, we propose a text-guided mechanism that allows fine-grained and region-specific control, enabling users to modify eyes, lips, or face makeup with natural language prompts. Experiments on benchmarks and real-world scenarios demonstrate improvements in fidelity, identity preservation, and flexibility. Examples of our dataset can be found at: https://makeup-adapter.github.io.
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
Parkinson's disease (PD) is a chronic and complex neurodegenerative disorder influenced by genetic, clinical, and lifestyle factors. Predicting this disease early is challenging because it depends on traditional diagnostic methods that face issues of subjectivity, which commonly delay diagnosis. Several objective analyses are currently in practice to help overcome the challenges of subjectivity; however, a proper explanation of these analyses is still lacking. While machine learning (ML) has demonstrated potential in supporting PD diagnosis, existing approaches often rely on subjective reports only and lack interpretability for individualized risk estimation. This study proposes SCOPE-PD, an explainable AI-based prediction framework, by integrating subjective and objective assessments to provide personalized health decisions. Subjective and objective clinical assessment data are collected from the Parkinson's Progression Markers Initiative (PPMI) study to construct a multimodal prediction framework. Several ML techniques are applied to these data, and the best ML model is selected to interpret the results. Model interpretability is examined using SHAP-based analysis. The Random Forest algorithm achieves the highest accuracy of 98.66 percent using combined features from both subjective and objective test data. Tremor, bradykinesia, and facial expression are identified as the top three contributing features from the MDS-UPDRS test in the prediction of PD.