Abstract:Modern video retrieval systems are expected to handle diverse tasks ranging from corpus-level retrieval and fine-grained moment localization to flexible multimodal querying. Specialized architectures achieve strong retrieval performance by training modality-specific encoders on massive datasets, but they lack the ability to process composed multimodal queries. In contrast, multimodal LLM (MLLM)-based methods support rich multimodal search but their retrieval performance remains well below that of specialized systems. We present VIRTUE, an MLLM-based versatile video retrieval framework that integrates corpus and moment-level retrieval capabilities while accommodating composed multimodal queries within a single architecture. We use contrastive alignment of visual and textual embeddings generated using a shared MLLM backbone to facilitate efficient embedding-based candidate search. Our embedding model, trained efficiently using low-rank adaptation (LoRA) on 700K paired visual-text data samples, surpasses other MLLM-based methods on zero-shot video retrieval tasks. Additionally, we demonstrate that the same model can be adapted without further training to achieve competitive results on zero-shot moment retrieval, and state of the art results for zero-shot composed video retrieval. With additional training for reranking candidates identified in the embedding-based search, our model substantially outperforms existing MLLM-based retrieval systems and achieves retrieval performance comparable to state of the art specialized models which are trained on orders of magnitude larger data.
Abstract:Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.