Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Referring Expression Comprehension (REC) aims to localize the image region corresponding to a natural-language query. Recent neuro-symbolic REC approaches leverage large language models (LLMs) and vision-language models (VLMs) to perform compositional reasoning, decomposing queries 4 structured programs and executing them step-by-step. While such approaches achieve interpretable reasoning and strong zero-shot generalization, they assume that intermediate reasoning steps are accurate. However, this assumption causes cascading errors: false detections and invalid relations propagate through the reasoning chain, yielding high-confidence false positives even when no target is present in the image. To address this limitation, we introduce Verification-Integrated Reasoning Operators (VIRO), a neuro-symbolic framework that embeds lightweight operator-level verifiers within reasoning steps. Each operator executes and validates its output, such as object existence or spatial relationship, thereby allowing the system to robustly handle no-target cases when verification conditions are not met. Our framework achieves state-of-the-art performance, reaching 61.1% balanced accuracy across target-present and no-target settings, and demonstrates generalization to real-world egocentric data. Furthermore, VIRO shows superior computational efficiency in terms of throughput, high reliability with a program failure rate of less than 0.3%, and scalability through decoupled program generation from execution.
Cognitive anthropology suggests that the distinction of human intelligence lies in the ability to infer other individuals' knowledge states and understand their intentions. In comparison, our closest animal relative, chimpanzees, lack the capacity to do so. With this paper, we aim to evaluate LLM performance in the area of knowledge state tracking and estimation. We design two tasks to test (1) if LLMs can detect when story characters, through their actions, demonstrate knowledge they should not possess, and (2) if LLMs can predict story characters' next actions based on their own knowledge vs. objective truths they do not know. Results reveal that most current state-of-the-art LLMs achieve near-random performance on both tasks, and are substantially inferior to humans. We argue future LLM research should place more weight on the abilities of knowledge estimation and intention understanding.
Accurately localizing 3D objects like pedestrians, cyclists, and other vehicles is essential in Autonomous Driving. To ensure high detection performance, Autonomous Vehicles complement RGB cameras with LiDAR sensors, but effectively combining these data sources for 3D object detection remains challenging. We propose LCF3D, a novel sensor fusion framework that combines a 2D object detector on RGB images with a 3D object detector on LiDAR point clouds. By leveraging multimodal fusion principles, we compensate for inaccuracies in the LiDAR object detection network. Our solution combines two key principles: (i) late fusion, to reduce LiDAR False Positives by matching LiDAR 3D detections with RGB 2D detections and filtering out unmatched LiDAR detections; and (ii) cascade fusion, to recover missed objects from LiDAR by generating new 3D frustum proposals corresponding to unmatched RGB detections. Experiments show that LCF3D is beneficial for domain generalization, as it turns out to be successful in handling different sensor configurations between training and testing domains. LCF3D achieves significant improvements over LiDAR-based methods, particularly for challenging categories like pedestrians and cyclists in the KITTI dataset, as well as motorcycles and bicycles in nuScenes. Code can be downloaded from: https://github.com/CarloSgaravatti/LCF3D.
Object detectors often perform well in-distribution, yet degrade sharply on a different benchmark. We study cross-dataset object detection (CD-OD) through a lens of setting specificity. We group benchmarks into setting-agnostic datasets with diverse everyday scenes and setting-specific datasets tied to a narrow environment, and evaluate a standard detector family across all train--test pairs. This reveals a clear structure in CD-OD: transfer within the same setting type is relatively stable, while transfer across setting types drops substantially and is often asymmetric. The most severe breakdowns occur when transferring from specific sources to agnostic targets, and persist after open-label alignment, indicating that domain shift dominates in the hardest regimes. To disentangle domain shift from label mismatch, we compare closed-label transfer with an open-label protocol that maps predicted classes to the nearest target label using CLIP similarity. Open-label evaluation yields consistent but bounded gains, and many corrected cases correspond to semantic near-misses supported by the image evidence. Overall, we provide a principled characterization of CD-OD under setting specificity and practical guidance for evaluating detectors under distribution shift. Code will be released at \href{[https://github.com/Ritabrata04/cdod-icpr.git}{https://github.com/Ritabrata04/cdod-icpr}.
The task of 6DoF object pose estimation is one of the fundamental problems of 3D vision with many practical applications such as industrial automation. Traditional deep learning approaches for this task often require extensive training data or CAD models, limiting their application in real-world industrial settings where data is scarce and object instances vary. We propose a novel method for 6DoF pose estimation focused specifically on bins used in industrial settings. We exploit the cuboid geometry of bins by first detecting intermediate 3D line segments corresponding to their top edges. Our approach extends the 2D line segment detection network LeTR to operate on structured point cloud data. The detected 3D line segments are then processed using a simple geometric procedure to robustly determine the bin's 6DoF pose. To evaluate our method, we extend an existing dataset with a newly collected and annotated dataset, which we make publicly available. We show that incorporating synthetic training data significantly improves pose estimation accuracy on real scans. Moreover, we show that our method significantly outperforms current state-of-the-art 6DoF pose estimation methods in terms of the pose accuracy (3 cm translation error, 8.2$^\circ$ rotation error) while not requiring instance-specific CAD models during inference.
Agricultural weed detection on edge devices is subject to strict constraints on model capacity, computational resources, and real-time inference latency, which prevent performance improvements through model scaling or ensembling. This paper proposes Model-Driven Data Correction (MDDC), a data-centric framework that enhances detection performance by iteratively diagnosing and correcting data quality deficiencies. An automated error analysis procedure categorizes detection failures into four types: false negatives, false positives, class confusion, and localization errors. These error patterns are systematically addressed through a structured train-fix-retrain pipeline with version-controlled data management. Experimental results on multiple weed detection datasets demonstrate consistent improvements of 5-25 percent in mAP at 0.5 using a fixed lightweight detector (YOLOv8n), indicating that systematic data quality optimization can effectively alleviate performance bottlenecks under fixed model capacity constraints.
Vision In-Context Learning (VICL) enables inpainting models to quickly adapt to new visual tasks from only a few prompts. However, existing methods suffer from two key issues: (1) selecting only the most similar prompt discards complementary cues from other high-quality prompts; and (2) failing to exploit the structured information implied by different prompt arrangements. We propose an end-to-end VICL framework to overcome these limitations. Firstly, an adaptive Fusion Module aggregates critical patterns and annotations from multiple prompts to form more precise contextual prompts. Secondly, we introduce arrangement-specific lightweight MLPs to decouple layout priors from the core model, while minimally affecting the overall model. In addition, an bidirectional fine-tuning mechanism swaps the roles of query and prompt, encouraging the model to reconstruct the original prompt from fused context and thus enhancing collaboration between the fusion module and the inpainting model. Experiments on foreground segmentation, single-object detection, and image colorization demonstrate superior results and strong cross-task generalization of our method.
Infrared object detection focuses on identifying and locating objects in complex environments (\eg, dark, snow, and rain) where visible imaging cameras are disabled by poor illumination. However, due to low contrast and weak edge information in infrared images, it is challenging to extract discriminative object features for robust detection. To deal with this issue, we propose a novel vision-language representation learning paradigm for infrared object detection. An additional textual supervision with rich semantic information is explored to guide the disentanglement of object and non-object features. Specifically, we propose a Semantic Feature Alignment (SFA) module to align the object features with the corresponding text features. Furthermore, we develop an Object Feature Disentanglement (OFD) module that disentangles text-aligned object features and non-object features by minimizing their correlation. Finally, the disentangled object features are entered into the detection head. In this manner, the detection performance can be remarkably enhanced via more discriminative and less noisy features. Extensive experimental results demonstrate that our approach achieves superior performance on two benchmarks: M\textsuperscript{3}FD (83.7\% mAP), FLIR (86.1\% mAP). Our code will be publicly available once the paper is accepted.
Detecting vulnerable road users (VRUs), particularly children and adolescents, in low light and adverse weather conditions remains a critical challenge in computer vision, surveillance, and autonomous vehicle systems. This paper presents a purpose-built lightweight object detection model designed to identify young pedestrians in various environmental scenarios. To address these challenges, our approach leverages thermal imaging from long-wave infrared (LWIR) cameras, which enhances detection reliability in conditions where traditional RGB cameras operating in the visible spectrum fail. Based on the YOLO11 architecture and customized for thermal detection, our model, termed LTV-YOLO (Lightweight Thermal Vision YOLO), is optimized for computational efficiency, accuracy and real-time performance on edge devices. By integrating separable convolutions in depth and a feature pyramid network (FPN), LTV-YOLO achieves strong performance in detecting small-scale, partially occluded, and thermally distinct VRUs while maintaining a compact architecture. This work contributes a practical and scalable solution to improve pedestrian safety in intelligent transportation systems, particularly in school zones, autonomous navigation, and smart city infrastructure. Unlike prior thermal detectors, our contribution is task-specific: a thermally only edge-capable design designed for young and small VRUs (children and distant adults). Although FPN and depthwise separable convolutions are standard components, their integration into a thermal-only pipeline optimized for short/occluded VRUs under adverse conditions is, to the best of our knowledge, novel.
Visual In-Context Learning (VICL) has emerged as a powerful paradigm, enabling models to perform novel visual tasks by learning from in-context examples. The dominant "retrieve-then-prompt" approach typically relies on selecting the single best visual prompt, a practice that often discards valuable contextual information from other suitable candidates. While recent work has explored fusing the top-K prompts into a single, enhanced representation, this still simply collapses multiple rich signals into one, limiting the model's reasoning capability. We argue that a more multi-faceted, collaborative fusion is required to unlock the full potential of these diverse contexts. To address this limitation, we introduce a novel framework that moves beyond single-prompt fusion towards an multi-combination collaborative fusion. Instead of collapsing multiple prompts into one, our method generates three contextual representation branches, each formed by integrating information from different combinations of top-quality prompts. These complementary guidance signals are then fed into proposed MULTI-VQGAN architecture, which is designed to jointly interpret and utilize collaborative information from multiple sources. Extensive experiments on diverse tasks, including foreground segmentation, single-object detection, and image colorization, highlight its strong cross-task generalization, effective contextual fusion, and ability to produce more robust and accurate predictions than existing methods.