Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Regression models are widely used in industrial processes, engineering and in natural and physical sciences, yet their robustness to poisoning has received less attention. When it has, studies often assume unrealistic threat models and are thus less useful in practice. In this paper, we propose a novel optimal stealthy attack formulation that considers different degrees of detectability and show that it bypasses state-of-the-art defenses. We further propose a new methodology based on normalization of objectives to evaluate different trade-offs between effectiveness and detectability. Finally, we develop a novel defense (BayesClean) against stealthy attacks. BayesClean improves on previous defenses when attacks are stealthy and the number of poisoning points is significant.
Graph neural networks (GNNs) are increasingly adopted in industrial graph-based monitoring systems (e.g., Industrial internet of things (IIoT) device graphs, power-grid topology models, and manufacturing communication networks) to support anomaly detection, state estimation, and asset classification. In such settings, an adversary that compromises a small number of edge devices may inject counterfeit nodes (e.g., rogue sensors, virtualized endpoints, or spoofed substations) to bias downstream decisions while evading topology- and homophily-based sanitization. This paper formulates deployment-oriented node-injection attacks under constrained resources and proposes the \emph{Single-Edge Graph Injection Attack} (SEGIA), in which each injected node attaches to the operational graph through a single edge. SEGIA integrates a pruned SGC surrogate, multi-hop neighborhood sampling, and reverse graph convolution-based feature synthesis with a similarity-regularized objective to preserve local homophily and survive edge pruning. Theoretical analysis and extensive evaluations across datasets and defenses show at least $25\%$ higher attack success than representative baselines under substantially smaller edge budgets. These results indicate a system-level risk in industrial GNN deployments and motivate lightweight admission validation and neighborhood-consistency monitoring.
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
Real-time small object detection in Unmanned Aerial Vehicle (UAV) imagery remains challenging due to limited feature representation and ineffective multi-scale fusion. Existing methods underutilize frequency information and rely on static convolutional operations, which constrain the capacity to obtain rich feature representations and hinder the effective exploitation of deep semantic features. To address these issues, we propose EFSI-DETR, a novel detection framework that integrates efficient semantic feature enhancement with dynamic frequency-spatial guidance. EFSI-DETR comprises two main components: (1) a Dynamic Frequency-Spatial Unified Synergy Network (DyFusNet) that jointly exploits frequency and spatial cues for robust multi-scale feature fusion, (2) an Efficient Semantic Feature Concentrator (ESFC) that enables deep semantic extraction with minimal computational cost. Furthermore, a Fine-grained Feature Retention (FFR) strategy is adopted to incorporate spatially rich shallow features during fusion to preserve fine-grained details, crucial for small object detection in UAV imagery. Extensive experiments on VisDrone and CODrone benchmarks demonstrate that our EFSI-DETR achieves the state-of-the-art performance with real-time efficiency, yielding improvement of \textbf{1.6}\% and \textbf{5.8}\% in AP and AP$_{s}$ on VisDrone, while obtaining \textbf{188} FPS inference speed on a single RTX 4090 GPU.
One-stage object detection, particularly the YOLO series, strikes a favorable balance between accuracy and efficiency. However, existing YOLO detectors lack explicit modeling of heterogeneous object responses within shared feature channels, which limits further performance gains. To address this, we propose YOLO-DS, a framework built around a novel Dual-Statistic Synergy Operator (DSO). The DSO decouples object features by jointly modeling the channel-wise mean and the peak-to-mean difference. Building upon the DSO, we design two lightweight gating modules: the Dual-Statistic Synergy Gating (DSG) module for adaptive channel-wise feature selection, and the Multi-Path Segmented Gating (MSG) module for depth-wise feature weighting. On the MS-COCO benchmark, YOLO-DS consistently outperforms YOLOv8 across five model scales (N, S, M, L, X), achieving AP gains of 1.1% to 1.7% with only a minimal increase in inference latency. Extensive visualization, ablation, and comparative studies validate the effectiveness of our approach, demonstrating its superior capability in discriminating heterogeneous objects with high efficiency.
Laboratories are prone to severe injuries from minor unsafe actions, yet continuous safety monitoring -- beyond mandatory pre-lab safety training -- is limited by human availability. Vision language models (VLMs) offer promise for autonomous laboratory safety monitoring, but their effectiveness in realistic settings is unclear due to the lack of visual evaluation data, as most safety incidents are documented primarily as unstructured text. To address this gap, we first introduce a structured data generation pipeline that converts textual laboratory scenarios into aligned triples of (image, scene graph, ground truth), using large language models as scene graph architects and image generation models as renderers. Our experiments on the synthetic dataset of 1,207 samples across 362 unique scenarios and seven open- and closed-source models show that VLMs perform effectively given textual scene graph, but degrade substantially in visual-only settings indicating difficulty in extracting structured object relationships directly from pixels. To overcome this, we propose a post-training context-engineering approach, scene-graph-guided alignment, to bridge perceptual gaps in VLMs by translating visual inputs into structured scene graphs better aligned with VLM reasoning, improving hazard detection performance in visual only settings.
Deep learning has revolutionized numerous tasks within the computer vision field, including image classification, image segmentation, and object detection. However, the increasing deployment of deep learning models has exposed them to various adversarial attacks, including backdoor attacks. This paper presents a novel dynamic mask-based backdoor attack method, specifically designed for object detection models. We exploit a dataset poisoning technique to embed a malicious trigger, rendering any models trained on this compromised dataset vulnerable to our backdoor attack. We particularly focus on a mushroom detection dataset to demonstrate the practical risks posed by such attacks on critical real-life domains. Our work also emphasizes the importance of creating a detailed backdoor attack scenario to illustrate the significant risks associated with the outsourcing practice. Our approach leverages SAM, a recent and powerful image segmentation AI model, to create masks for dynamic trigger placement, introducing a new and stealthy attack method. Through extensive experimentation, we show that our sophisticated attack scenario maintains high accuracy on clean data with the YOLOv7 object detection model while achieving high attack success rates on poisoned samples. Our approach surpasses traditional methods for backdoor injection, which are based on static and consistent patterns. Our findings underscore the urgent need for robust countermeasures to protect deep learning models from these evolving adversarial threats.
We present VGGT-SLAM 2.0, a real time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real time performance while running online onboard a ground robot using a Jetson Thor. We also test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.