Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Back-support exoskeletons have been proposed to mitigate spinal loading in industrial handling, yet their effectiveness critically depends on timely and context-aware assistance. Most existing approaches rely either on load-estimation techniques (e.g., EMG, IMU) or on vision systems that do not directly inform control. In this work, we present a vision-gated control framework for an active lumbar occupational exoskeleton that leverages egocentric vision with wearable gaze tracking. The proposed system integrates real-time grasp detection from a first-person YOLO-based perception system, a finite-state machine (FSM) for task progression, and a variable admittance controller to adapt torque delivery to both posture and object state. A user study with 15 participants performing stooping load lifting trials under three conditions (no exoskeleton, exoskeleton without vision, exoskeleton with vision) shows that vision-gated assistance significantly reduces perceived physical demand and improves fluency, trust, and comfort. Quantitative analysis reveals earlier and stronger assistance when vision is enabled, while questionnaire results confirm user preference for the vision-gated mode. These findings highlight the potential of egocentric vision to enhance the responsiveness, ergonomics, safety, and acceptance of back-support exoskeletons.
Zero-shot out-of-vocabulary detection (ZS-OOVD) aims to accurately recognize objects of in-vocabulary (IV) categories provided at zero-shot inference, while simultaneously rejecting undefined ones (out-of-vocabulary, OOV) that lack corresponding category prompts. However, previous methods are prone to overfitting the IV classes, leading to the OOV or undefined classes being misclassified as IV ones with a high confidence score. To address this issue, this paper proposes a zero-shot OOV detector (OOVDet), a novel framework that effectively detects predefined classes while reliably rejecting undefined ones in zero-shot scenes. Specifically, due to the model's lack of prior knowledge about the distribution of OOV data, we synthesize region-level OOV prompts by sampling from the low-likelihood regions of the class-conditional Gaussian distributions in the hidden space, motivated by the assumption that unknown semantics are more likely to emerge in low-density areas of the latent space. For OOV images, we further propose a Dirichlet-based gradient attribution mechanism to mine pseudo-OOV image samples, where the attribution gradients are interpreted as Dirichlet evidence to estimate prediction uncertainty, and samples with high uncertainty are selected as pseudo-OOV images. Building on these synthesized OOV prompts and pseudo-OOV images, we construct the OOV decision boundary through a low-density prior constraint, which regularizes the optimization of OOV classes using Gaussian kernel density estimation in accordance with the above assumption. Experimental results show that our method significantly improves the OOV detection performance in zero-shot scenes. The code is available at https://github.com/binyisu/OOV-detector.
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
We address dynamic manipulation of deformable linear objects by presenting SPiD, a physics-informed self-supervised learning framework that couples an accurate deformable object model with an augmented self-supervised training strategy. On the modeling side, we extend a mass-spring model to more accurately capture object dynamics while remaining lightweight enough for high-throughput rollouts during self-supervised learning. On the learning side, we train a neural controller using a task-oriented cost, enabling end-to-end optimization through interaction with the differentiable object model. In addition, we propose a self-supervised DAgger variant that detects distribution shift during deployment and performs offline self-correction to further enhance robustness without expert supervision. We evaluate our method primarily on the rope stabilization task, where a robot must bring a swinging rope to rest as quickly and smoothly as possible. Extensive experiments in both simulation and the real world demonstrate that the proposed controller achieves fast and smooth rope stabilization, generalizing across unseen initial states, rope lengths, masses, non-uniform mass distributions, and external disturbances. Additionally, we develop an affordable markerless rope perception method and demonstrate that our controller maintains performance with noisy and low-frequency state updates. Furthermore, we demonstrate the generality of the framework by extending it to the rope trajectory tracking task. Overall, SPiD offers a data-efficient, robust, and physically grounded framework for dynamic manipulation of deformable linear objects, featuring strong sim-to-real generalization.
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
3-D object detection based on 4-D radar-vision is an important part in Internet of Vehicles (IoV). However, there are two challenges which need to be faced. First, the 4-D radar point clouds are sparse, leading to poor 3-D representation. Second, vision datas exhibit representation degradation under low-light, long distance detection and dense occlusion scenes, which provides unreliable texture information during fusion stage. To address these issues, a framework named SDCM is proposed, which contains Simulated Densifying and Compensatory Modeling Fusion for radar-vision 3-D object detection in IoV. Firstly, considering point generation based on Gaussian simulation of key points obtained from 3-D Kernel Density Estimation (3-D KDE), and outline generation based on curvature simulation, Simulated Densifying (SimDen) module is designed to generate dense radar point clouds. Secondly, considering that radar data could provide more real time information than vision data, due to the all-weather property of 4-D radar. Radar Compensatory Mapping (RCM) module is designed to reduce the affects of vision datas' representation degradation. Thirdly, considering that feature tensor difference values contain the effective information of every modality, which could be extracted and modeled for heterogeneity reduction and modalities interaction, Mamba Modeling Interactive Fusion (MMIF) module is designed for reducing heterogeneous and achieving interactive Fusion. Experiment results on the VoD, TJ4DRadSet and Astyx HiRes 2019 dataset show that SDCM achieves best performance with lower parameter quantity and faster inference speed. Our code will be available.
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
Multimodal sentiment analysis, which includes both image and text data, presents several challenges due to the dissimilarities in the modalities of text and image, the ambiguity of sentiment, and the complexities of contextual meaning. In this work, we experiment with finding the sentiments of image and text data, individually and in combination, on two datasets. Part of the approach introduces the novel `Textual-Cues for Enhancing Multimodal Sentiment Analysis' (TEMSA) based on object recognition methods to address the difficulties in multimodal sentiment analysis. Specifically, we extract the names of all objects detected in an image and combine them with associated text; we call this combination of text and image data TEMS. Our results demonstrate that only TEMS improves the results when considering all the object names for the overall sentiment of multimodal data compared to individual analysis. This research contributes to advancing multimodal sentiment analysis and offers insights into the efficacy of TEMSA in combining image and text data for multimodal sentiment analysis.