Abstract:Long-horizon robotic tasks are hard due to continuous state-action spaces and sparse feedback. Symbolic world models help by decomposing tasks into discrete predicates that capture object properties and relations. Existing methods learn predicates either top-down, by prompting foundation models without data grounding, or bottom-up, from demonstrations without high-level priors. We introduce UniPred, a bilevel learning framework that unifies both. UniPred uses large language models (LLMs) to propose predicate effect distributions that supervise neural predicate learning from low-level data, while learned feedback iteratively refines the LLM hypotheses. Leveraging strong visual foundation model features, UniPred learns robust predicate classifiers in cluttered scenes. We further propose a predicate evaluation method that supports symbolic models beyond STRIPS assumptions. Across five simulated and one real-robot domains, UniPred achieves 2-4 times higher success rates than top-down methods and 3-4 times faster learning than bottom-up approaches, advancing scalable and flexible symbolic world modeling for robotics.
Abstract:Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.




Abstract:Point cloud completion aims to recover the completed 3D shape of an object from its partial observation caused by occlusion, sensor's limitation, noise, etc. When some key semantic information is lost in the incomplete point cloud, the neural network needs to infer the missing part based on the input information. Intuitively we would apply an autoencoder architecture to solve this kind of problem, which take the incomplete point cloud as input and is supervised by the ground truth. This process that develops model's imagination from incomplete shape to complete shape is done automatically in the latent space. But the knowledge for mapping from incomplete to complete still remains dark and could be further explored. Motivated by the knowledge distillation's teacher-student learning strategy, we design a knowledge transfer way for completing 3d shape. In this work, we propose a novel View Distillation Point Completion Network (VD-PCN), which solve the completion problem by a multi-view distillation way. The design methodology fully leverages the orderliness of 2d pixels, flexibleness of 2d processing and powerfulness of 2d network. Extensive evaluations on PCN, ShapeNet55/34, and MVP datasets confirm the effectiveness of our design and knowledge transfer strategy, both quantitatively and qualitatively. Committed to facilitate ongoing research, we will make our code publicly available.