Text classification is the process of categorizing text documents into predefined categories or labels.
We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 40.2% MSRVTT retrieval for videos, and 28.28 PSNR with 90.9% classification accuracy for 3D.. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.
Unsupervised analysis of text corpora is challenging, especially in data-scarce domains where traditional topic models struggle. While these models offer a solution, they typically describe clusters with lists of keywords that require significant manual effort to interpret and often lack semantic coherence. To address this critical interpretability gap, we introduce Recursive Thematic Partitioning (RTP), a novel framework that leverages Large Language Models (LLMs) to interactively build a binary tree. Each node in the tree is a natural language question that semantically partitions the data, resulting in a fully interpretable taxonomy where the logic of each cluster is explicit. Our experiments demonstrate that RTP's question-driven hierarchy is more interpretable than the keyword-based topics from a strong baseline like BERTopic. Furthermore, we establish the quantitative utility of these clusters by showing they serve as powerful features in downstream classification tasks, particularly when the data's underlying themes correlate with the task labels. RTP introduces a new paradigm for data exploration, shifting the focus from statistical pattern discovery to knowledge-driven thematic analysis. Furthermore, we demonstrate that the thematic paths from the RTP tree can serve as structured, controllable prompts for generative models. This transforms our analytical framework into a powerful tool for synthesis, enabling the consistent imitation of specific characteristics discovered in the source corpus.
We address the problem of data scarcity in harmful text classification for guardrailing applications and introduce GRAID (Geometric and Reflective AI-Driven Data Augmentation), a novel pipeline that leverages Large Language Models (LLMs) for dataset augmentation. GRAID consists of two stages: (i) generation of geometrically controlled examples using a constrained LLM, and (ii) augmentation through a multi-agentic reflective process that promotes stylistic diversity and uncovers edge cases. This combination enables both reliable coverage of the input space and nuanced exploration of harmful content. Using two benchmark data sets, we demonstrate that augmenting a harmful text classification dataset with GRAID leads to significant improvements in downstream guardrail model performance.
For Relation Extraction (RE), the manual annotation of training data may be prohibitively expensive, since the sentences that contain the target relations in texts can be very scarce and difficult to find. It is therefore beneficial to develop an efficient method that can automatically extract training instances from unlabeled texts for training RE models. Recently, large language models (LLMs) have been adopted in various natural language processing tasks, with RE also benefiting from their advances. However, when leveraging LLMs for RE with predefined relation categories, two key challenges arise. First, in a multi-class classification setting, LLMs often struggle to comprehensively capture the semantics of every relation, leading to suboptimal results. Second, although employing binary classification for each relation individually can mitigate this issue, it introduces significant computational overhead, resulting in impractical time complexity for real-world applications. Therefore, this paper proposes a framework called M-BRe to extract training instances from unlabeled texts for RE. It utilizes three modules to combine the advantages of both of the above classification approaches: Relation Grouping, Relation Extraction, and Label Decision. Extensive experiments confirm its superior capability in discovering high-quality training samples from unlabeled texts for RE.
The increasing deployment of Large Language Models (LLMs) in healthcare necessitates a rigorous evaluation of their factual reliability. However, existing benchmarks are often limited by narrow domains of data, failing to capture the complexity of real-world medical information. To address this critical gap, we introduce MedFact, a new and challenging benchmark for Chinese medical fact-checking. MedFact comprises 2,116 expert-annotated instances curated from diverse real-world texts, spanning 13 medical specialties, 8 fine-grained error types, 4 writing styles, and multiple difficulty levels. Its construction employs a hybrid AI-human framework where iterative expert feedback refines an AI-driven, multi-criteria filtering process, ensuring both high data quality and difficulty. We conduct a comprehensive evaluation of 20 leading LLMs, benchmarking their performance on veracity classification and error localization against a human expert baseline. Our results reveal that while models can often determine if a text contains an error, precisely localizing it remains a substantial challenge, with even top-performing models falling short of human performance. Furthermore, our analysis uncovers a frequent ``over-criticism'' phenomenon, a tendency for models to misidentify correct information as erroneous, which is exacerbated by advanced reasoning techniques such as multi-agent collaboration and inference-time scaling. By highlighting these critical challenges for deploying LLMs in medical applications, MedFact provides a robust resource to drive the development of more factually reliable and medically aware models.
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.
In the age of information overload, content management for online news articles relies on efficient summarization to enhance accessibility and user engagement. This article addresses the challenge of extractive text summarization by employing advanced machine learning techniques to generate concise and coherent summaries while preserving the original meaning. Using the Cornell Newsroom dataset, comprising 1.3 million article-summary pairs, we developed a pipeline leveraging BERT embeddings to transform textual data into numerical representations. By framing the task as a binary classification problem, we explored various models, including logistic regression, feed-forward neural networks, and long short-term memory (LSTM) networks. Our findings demonstrate that LSTM networks, with their ability to capture sequential dependencies, outperform baseline methods like Lede-3 and simpler models in F1 score and ROUGE-1 metrics. This study underscores the potential of automated summarization in improving content management systems for online news platforms, enabling more efficient content organization and enhanced user experiences.
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
Despite its significance, Arabic, a linguistically rich and morphologically complex language, faces the challenge of being under-resourced. The scarcity of large annotated datasets hampers the development of accurate tools for subjectivity analysis in Arabic. Recent advances in deep learning and Transformers have proven highly effective for text classification in English and French. This paper proposes a new approach for subjectivity assessment in Arabic textual data. To address the dearth of specialized annotated datasets, we developed a comprehensive dataset, AraDhati+, by leveraging existing Arabic datasets and collections (ASTD, LABR, HARD, and SANAD). Subsequently, we fine-tuned state-of-the-art Arabic language models (XLM-RoBERTa, AraBERT, and ArabianGPT) on AraDhati+ for effective subjectivity classification. Furthermore, we experimented with an ensemble decision approach to harness the strengths of individual models. Our approach achieves a remarkable accuracy of 97.79\,\% for Arabic subjectivity classification. Results demonstrate the effectiveness of the proposed approach in addressing the challenges posed by limited resources in Arabic language processing.
The increasing deployment of large language models (LLMs) in natural language processing (NLP) tasks raises concerns about energy efficiency and sustainability. While prior research has largely focused on energy consumption during model training, the inference phase has received comparatively less attention. This study systematically evaluates the trade-offs between model accuracy and energy consumption in text classification inference across various model architectures and hardware configurations. Our empirical analysis shows that the best-performing model in terms of accuracy can also be energy-efficient, while larger LLMs tend to consume significantly more energy with lower classification accuracy. We observe substantial variability in inference energy consumption ($<$mWh to $>$kWh), influenced by model type, model size, and hardware specifications. Additionally, we find a strong correlation between inference energy consumption and model runtime, indicating that execution time can serve as a practical proxy for energy usage in settings where direct measurement is not feasible. These findings have implications for sustainable AI development, providing actionable insights for researchers, industry practitioners, and policymakers seeking to balance performance and resource efficiency in NLP applications.